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2 STEVEN HURDER

1. Introduction

This is a collection of problems and related comments concerning the geometry, topology and
classification of smooth foliations. It was prepared in anticipation of the “golden month” of meetings
on foliations in Japan during September 2003, and updated following the meetings with some
additional questions, and various corrections. At the end of the list of problems is a very extensive
(and excessive, but useful) set of references related to the questions raised.

“Foliation problem sets” have a long tradition in the study of this subject – they highlight progress
in areas of research, and hopes for progress. Smale’s celebrated survey in 1967 of dynamical systems
[540] might be considered the first foliation problem set, as many of the questions about dynamical
systems lead to questions about the properties of foliations associated to dynamical system.

Foliation theory had its own seminal survey, given by H. Blaine Lawson in the Bulletin of the AMS in
1974 [336] at the beginning of a period of very rapid development in the field. Lawson’s subsequent
lectures at Washington University in St. Louis in 1975 [337] captured the spirit of progress in the
subject at that time, especially the very recently proven foliation existence theorems by Thurston
for higher codimensions [572] and codimension one [573], and the works of many authors on the
existence, properties and evaluation of secondary classes.

The year 1976 was a critical year for conferences reporting on new results in foliation theory – in
particular, there were major conferences with problem sessions on foliations at Stanford (compiled
by Mark Mostow and Paul Schweitzer [431]) and at Rio de Janeiro (compiled by Paul Schweitzer
[514]). These problem sessions posed questions which were prescient, foreshadowing developments
in the subject through the 1980’s and 90’s – yet many of the problems raised still remain open.

The meeting “Differential Topology, Foliations and Group Actions. Rio de Janeiro 1992”, included
an extensive collection of problems compiled by Remi Langevin [328]). Notable is how many of the
suggested problems were unchanged during the 16 years between these two conferences.

The meeting “Analysis and geometry in foliated manifolds” in Santiago do Compostela 1994 in-
cluded a short problem set at the end of its proceedings [362].

The Seminaire Bourbaki report “Sur l’invariant de Godbillon-Vey” by Étienne Ghys [184] included
a number of problems with discussions about them. The author’s survey of the Godbillon-Vey class
[261] in the proceedings of the conference “Foliations: Geometry and Dynamics (Warsaw, 2000)”
reported on further developments in the area of foliation dynamics and secondary classes.

This problem set was begun for inclusion in the proceedings of the Warsaw 2000 conference.

The field of foliations becomes broader and more deeply explored with each decade – it is now more
than fifty years since Reeb’s original paper [488]! To get some perspective, consider that the first
five sections of Lawson’s 1974 survey was dedicated to results and questions about the existence
of foliations on particular manifolds, and reported on examples and methods of construction of
foliations due to wide variety of authors, including A’Campo [1], Alexander [8], Arraut [11], Durfee
[129, 130], Fukui [158], Lawson [130, 335, 498], Laudenbach [334], Lickorish [357], Moussu [432, 434],
Novikov [447, 448, 449, 450], Reeb [488, 489, 490], Reinhart [393], Rosenberg [496, 497, 499, 500,
501, 503, 504], Roussarie [499, 500, 501, 198, 503, 505, 506], Schweitzer [513], Tamura [564, 565,
566, 567, 406, 407, 408], Thurston [570, 504], Wood [632, 633, 634, 635] to mention some.

The last sections of Lawson’s article cited the developing theory of general existence and non-
existence results by Bott [41, 42, 43, 52], Gromov [201], Haefliger [210, 211, 212, 213], Phillips
[468, 469, 470], and Thurston [571, 572, 573].

Finally, Lawson’s survey was written just at the advent of “classification theory” for foliations in
the 1970’s and the extremely powerful ideas and techniques of Gromov [201], Haefliger [212, 213],
Mather [364, 365, 366, 367, 368, 369], McDuff [377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387,
388, 389, 390], Phillips [468, 469, 470], Segal [517, 518, 519, 390, 520], and Thurston [571, 572, 573],
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led to an increased emphasis on the “machinery” of algebraic and differential topology in the
subject, and with less prominence given to developing the techniques of construction.

It is correspondingly more difficult to survey the many developments in the field, and to compile and
comment on problem sets across the variety of active topics of research. The focus of this problem
set is thus more restricted than we might hope for. For example, taut foliations on 3-manifolds was
one of the main topics of the Warsaw conference, and has been an extremely active area of study
recently. There is a comprehensive, up-to-date set of problems on this topic, compiled by Danny
Calegari, and available on the web at [68]. The omission of the many important questions about
foliations on 3-manifolds from this problem set is thus justified.

However, there are many other topics, which are unfortunately not covered either, including:
“rigidity and deformations of foliations”, “Riemannian foliations”, “Riemannian geometry of foli-
ated manifolds”, “holomorphic foliations”, “singular foliations” , “confoliations and contact struc-
tures”, “analysis of foliated manifolds”, “index theory and cyclic cohomology of foliations”, and
“Gel’fand-Fuks cohomology, cyclic cohomology and Hopf algebras” are not covered. The list of
topics not covered shows how incredibly far the subject has developed since Reeb’s Thesis!

The problems included here are posed by a variety of researchers. Some of the problems have
been previously published, and we include follow-up comments were possible. Other problems
are from the author’s personal collection of mathematics problems encountered over the last 25
years. Where known, the names of the person who suggested a problem is included, and where
the problem has appeared previously is cited. The author has attempted to include only those
problems where there is some feeling that the current status can be accurately reported. In any
case, misstatements, misunderstandings and outright fallacies concerning any of these problems are
all due to the author.

Two years late for the Warsaw deadline, these problems were prepared for and distributed during
the meetings “Geometry and Foliations 2003” at Ryukoku University, Kyoto, and “BGamma School
– Homotopy Theory of Foliations” at Chuo University, Tokyo during September and October 2003.
Comments, additions and corrections to this revised version of the problem set reflect comments
offered during these meetings.

On a personal note, the author’s impression is that given the current state of research into clas-
sification theory of foliations, described in the last sections, to make progress now demands new
techniques and ideas combining geometric methods with the algebraic and classifying space clas-
sification methods. We include in particular a number of problems which highlight constructions
that would be interesting to know how to do. This focus on “building foliations” is an argument
for “returning to its roots” – a reading of the literature cited at the end shows how many papers
on foliations in the 1960’s and 1970’s were dedicated to geometric constructions. One underlying
theme of this problem set is that all of the technological developments of the thirty years can now
serve as a guide for new constructions.
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2. Geometry of leaves

There is a long tradition of questions about which open complete manifolds can be the leaf of a
smooth foliation of a compact manifold. This article by Sondow [542] was perhaps the first time
this question appeared in print, but it is one of the most natural questions about foliations. This is
called the “realization” problem, and it is one of the more difficult problems to study, as there are
only a small collection of techniques available, which have yielded sporadic results – both positive
and negative. We first fix the notation and context.

Let M be a compact manifold with a Cr foliation F of leaf dimension p and codimension q. A choice
of a Riemannian metric g on TM determines a Riemannian metric gL on each leaf L ⊂ M of F .
The pair (L, gL) is Riemannian manifold with the geodesic length metric dL : L×L→ [0,∞). Then
(L, dL) is a complete metric space with a unique quasi-isometry type. A more precise version of the
realization problem, is to ask what restrictions are placed on the Riemannian geometry of a leaf of
a foliation, and what restrictions on the quasi-isometry type are imposed by the hypotheses that a
manifold has the distance function derived from such a metric. In short, what are the restrictions
on the intrinsic geometry of a leaf?

The problem of realizing surfaces as leaves in 3-manifolds has the oldest tradition, starting with
the examples in Reeb’s thesis [488]. The first systematic treatment was made by W. Bouma and
G. Hector, who showed in [58] that every open surface can be the leaf of a codimension one smooth
foliation of R3. Cantwell and Conlon then showed in [79] that every open surface can be a leaf of
a codimension one smooth foliation of a compact 3-manifold. In neither case, do the authors make
any assertion about the quasi-isometry types which can be realized. In contrast, there are several
constructions of quasi-isometry classes of surfaces which cannot be realized, given by Abdelghani
Zeghib [638] and Paul Schweitzer [516]. The obstruction to realization uses the concept of the leaf
entropy, introduced by Oliver Attie and the author [18, 257].

An open surface is planar if it can be embedded in R2. In other words, the manifold is diffeomorphic
to R2−K where K is some closed subset. For example, K might be a closed subset of the interval
[0, 1], and so inherits topological properties such as the sequence of derived sets associated to K.
Given any countable ordinal β, it is possible to construct a closed subset Kβ ⊂ [0, 1] whose derived
sequence corresponds to β. This result is most likely due to G. Cantor, but the argument was
shown to the author by Dave Marker [361].

PROBLEM 2.1. For any countable ordinal β, give a constructive procedure for producing a foli-
ated compact manifold with a leaf L such that the endset ε(L) has derived series α. For example,

how do you realize a leaf corresponding to the first exceptional ordinal ε0 = ωω
ω.
..

?

The indirect way to do this is to first realize ε0 as a closed subset of R2, then use the construction
of Cantwell and Conlon [79] to realize the complement of this set as a leaf. The underlying point
of the question is whether the finitely generated pseudogroup structure of a foliation imposes any
order properties on the endsets of the leaves, like an automatic group structure, which can then
be related to the logical properties of the endsets (cf. the work of Adams and Kechris [6]). This
would seem to be an area of foliation or pseudogroup theory where little has been proven, while the
analogous topics for groups is well-developed (see [189, 190] for just an introduction to this topic –
the literature on geometric group theory is vast.)

For foliations with leaves of dimension 3, the realization question has a much different answer. In
1985, both Ghys [177] and T. Inaba, T. Nishimori, M. Takamura and N. Tsuchiya [287] showed
there are 3-dimensional open manifolds which are not homeomorphic to leaves of any codimension
one foliation of a compact manifold. The open 3-manifolds which these authors construct have
completely aperiodic topology on one of their ends. There is, as yet, no general understanding of
which 3-manifolds can be realized as leaves.
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PROBLEM 2.2. Which open 3-manifolds are homeomorphic to some leaf of a foliation of a
compact manifold?

A Whitehead manifold W is an irreducible, contractible open 3-manifold which is not homeomorphic
to R3. The original Whitehead manifold W (described in Rolfson, page 82, [495]) is an end-periodic
3-manifold. Paul Schweitzer observed that W can be a leaf in a homological Reeb component in
codimension one, since it is obtained from an embedding φ : C → Int(C), where C is the solid
torus, as the direct limit of φ iterated repeatedly.

The following problem was proposed by Schweitzer in the meeting in Kyoto:

PROBLEM 2.3. Can every Whitehead manifold W be a leaf of a codimension-one foliation of a
compact 4-manifold? Of a foliation of any codimension?

The point of the question is that there are Whitehead manifolds defined by a sequence of embeddings
φn : C → Int(C), where W = lim

n→∞
(C, φn) and the φn’s are not eventually periodic. One could try

to first show that if such a W is a proper leaf, then the end of the leaf has some strong periodic
limiting behavior, and hence the φn are eventually periodic, contrary to assumption. If such a W is
embedded as a non-proper leaf, then the quasi-uniformity of such leaves seems to be in opposition
to the construction of W . So, in both cases, there is work to do – this seems like a very good
question! Moreover, this question shows the limits of our current understanding of “what leaves
look like”.

It is also natural to ask the same question for non-contractible 3-manifolds W obtained as above
from a sequence of embeddings φn : C → Int(C) that is not eventually periodic.

For foliations with leaves of dimension 4, there is an analogous question, whether it is possible
to realize an exotic R4 as a leaf. This problem is even more interesting, due to the existence
of exotic differential structures on R4. Recall that an exotic R4 is a smooth manifold X which
is homeomorphic to Euclidean R4, but is not diffeomorphic to R4. There are in fact continuous
families of such exotic beasts (see Gompf [199], Furuta and Ohta [164].) There are also constructions
of continuous families of exotic differentiable structures of open 4-manifolds (see [36, 107]). All of
these manifolds are not the coverings of a compact manifold, ad it seems just as unlikely that they
could be leaves of a foliation.

PROBLEM 2.4. Show that a smooth manifold L which is an exotic R4 cannot be a leaf of a
C1-foliation F of a compact manifold M .

One supposes that the same sort of restriction is true for the other constructions of exotic open
4-manifolds, but the author knows of no results published on this topic.

For leaf dimensions greater than four, there are no general results about the realization problem.
Restrictions on which manifolds are homeomorphic to leaves should exist – in the spirit of the work
of [177, 287] – they just haven’t been discovered yet. Here are three basic questions:

PROBLEM 2.5. Give a complete Riemannian manifold which is not homeomorphic to a leaf of
a foliation in codimension greater than one.

The problem is really to develop new “recursion invariants” of the homotopy type of a leaf, and
then construct smooth manifolds whose values for these invariants obstructs their being a leaf.
For example, the Whitehead manifolds have the property thatthey are not “tame at infinity”, and
the conjecture above is that only the end-periodic examples can be realized as leaves. Here is a
generalization of this conjecture:

PROBLEM 2.6. Suppose that L is a smooth contractible manifold. If L is a leaf of a C1-foliation
F of a compact manifold M , what can be said about the end-periodic structure of L? Must L be
end-periodic?
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The work of Oliver Attie (see [16, 17, 18, 257]) on surgery on open manifolds gives a way to descibe
algebraicly the surgery sets for leaves, but these are formulated in terms of uniform structures, so
are not yet homeomorphism invariants. One can ask for some form of algebraic classification of the
surgeries that result in leaves of foliations:

PROBLEM 2.7. Let L be an open complete n-manifold for n ≥ 5. If L is homeomorphic to a leaf
of a foliation of a compact manifold, does this imply restrictions on the set of manifolds homotopy
equivalent to L?

Now consider the more metric realization problem, where we assume L is a smooth leaf of a
foliation of a compact Riemannian manifold. The problem is, what restrictions are thus placed on
the Riemannian geometry of L, and what restrictions on the quasi-isometry type are imposed by
the hypotheses that a manifold has the distance function derived from such a metric? In short,
what are the restrictions on the intrinsic geometry of a leaf?

Let L be a complete Riemannian manifold. Fix a base-point x ∈ L, then let V olL(x,R) denote the
volume of a ball centered at x ∈ L with radius R. Say L has:

• subexponential growth if lim sup
R→∞

log{V olL(x,R)}/R = 0.

• non-exponential growth if lim inf
R→∞

log{V olL(x,R)}/R = 0.

• exponential growth if lim inf
R→∞

log{V olL(x,R)}/R > 0.

These properties are independent of the choice of the basepoint, and are quasi-isometry invariants
of the geodesic metric space L. If L is a leaf of a foliation of a compact manifold M , then the choice
of a Riemannian metric on M determines a unique quasi-isometry class of metrics on L.

One can then ask what growth types occur as leaves of foliations? It was realized in the early
1970’s that exponential growth types are associated with hyperbolic systems, resilient leaves and
exceptional minimal sets [433, 476, 479], while subexponential growth is associated with parabolic
group actions, and homology cycles [480, 481, 558] – especially through the works of Joseph Plante
(see also [475, 480, 481, 482, 483].)

Phillips and Sullivan [471] and later Januszkiewicz [291] showed there are obstructions to realiz-
ing a certain quasi-isometry types of manifolds with subexponential growth type in a given closed
manifold, based on the asymptotic homology cycles determined by a leaf. The obstructions they de-
veloped required the leaf to have subexponential growth in order to construct asymptotic homology
cycles, and the ambient manifold to have some vanishing properties in cohomology.

Attie and Hurder [18, 257] introduced in 1993 an invariant of quasi-isometry type which gave an
obstruction to a complete manifold being realized as a leaf of a foliation in any codimension, and
which applied to all growth types. It is then possible to construct many examples of “exotic quasi-
isometry types” - those which are highly chaotic at infinity – and prove that these cannot be leaves.
The Attie–Hurder constructions of “random water towers” on open manifolds used surgeries in
higher dimensions. Zeghib [638] and later Schweitzer [516] gave simplified constructions of these
examples using “bubbles of positive curvature”, which applied to surfaces.

There is a more refined quasi-isometry invariant of leaves, called the growth function, which is the
equivalence class of the volume growth function for geodesic balls, R 7→ V olL(x,R).

PROBLEM 2.8. Which classes of growth functions arise as a leaf of a Cr-foliation, for r ≥ 0?

The growth type of a leaf is at most exponential, but the existence of leaves with various inter-
mediate (or fractional) growth types between polynomial and exponential may differ for the cases
r = 1,∞, ω, for example. The realization of various growth types via constructions has been stud-
ied by Cantwell and Conlon [73, 76, 77], Hector [229, 230, 231, 233], Inaba [279], and Tsuchiya
[594, 595, 596, 597].
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Marek Badura has more recently studied the problem of realizing various recursively defined growth
types as open complete manifolds, and as leaves of foliations [19, 20]. This work is in the spirit of
Problem 2.1, as he uses explicit constructions to realize the growth types.

We mention one more class of problems, which are more close to rigidity questions, but are phrased
in terms of the existence of prescribed Riemannian metrics on the leaves.

PROBLEM 2.9. Can a codimension one foliation have higher rank?

Burger and Monod [65, 66] and Ghys [188] showed that a higher rank group does not admit
an effective C1-action on the circle. One can view these results as non-existence theorems for
a codimension one foliation transverse to a circle bundle with non-compact leaves. Can these
theorems be generalized to codimension one foliations which are not transverse to a circle bundle?
Part of the problem is to give a suitable definition of higher rank for a foliation (cf. [641, 7, 5].)

The recurrence properties of a leaf in a foliated compact manifold are a consequence of a weak
version of covering transformations - the leaves admit a cocompact action of a pseudogroup, though
not necessarily of a group. Based on this analogy between covering spaces and leaves, one expects:

PROBLEM 2.10. Show that the non-standard examples of complete manifolds with negative sec-
tional curvature constructed by Gromov and Thurston [206] cannot be realized as leaves of a C1-
foliation of a compact manifold.
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3. Dynamics of leaves

Let M be a compact manifold without boundary, and F is a Cr foliation with leaf dimension p and
codimension q. The theme of the problems in this section concerns the recurrence properties of
non-compact leaves in a foliation, and in what way does the dynamics of a single leaf, or collection
of leaves, impose similar behavior for the dynamics of the other leaves.

We begin with a beguilingly simple question posed to the author by Scot Adams. This was problem
A.3.1 in the Rio 1992 problem set [328]:

PROBLEM 3.1. Suppose that F is a topological (or C1, C2, etc.) foliation of a compact manifold
M . Is it possible that F has exactly one non-compact leaf, with all of the remaining leaves compact?

The answer is no in codimension one, as the set of the compact leaves is a compact set. Elmar
Vogt proved that for a topological foliation in codimension two, F is either a Seifert fibration, or
has uncountably many leaves [617].

A foliation with at most countable number of non-compact leaves is called almost compact in [254].
It is known that every leaf of an almost compact foliation must be proper. If an almost compact
foliation admits a cross-section (a closed transverse submanifold which intersects every leaf of the
foliation) then every leaf must be compact and the foliation is a generalized Seifert fibration [254].
The current formulation of the problem is thus, does there exists a foliation of codimension greater
than two on a compact manifold M with at most countable number of non-compact proper leaves,
and all of the remaining leaves compact?

A foliation is said to be essentially compact if the set of non-compact leaves has Lebesgue measure
zero. Tracy Payne constructed in [466] examples of essentially compact foliations, which settled
Problem A.3.2 of [328]. Here is a related question:

PROBLEM 3.2 (A. Fahti, M. Herman). Does there exists a C1-diffeomorphism of a compact
manifold M such that almost every orbit is periodic, but the map is not of finite order? Can
such a map be found which is volume-preserving?

REMARK: The methods of Edwards, Millet and Sullivan [131] are sufficient to show (with slight
modification) that if the set of non-periodic orbits does not separate the manifold M , then the map
has finite order. Thus, the problem is to replace the topological non-separating condition on the
non-periodic orbits, with a condition that they do not “separate in measure”.

Recurrence properties of leaves are related to their growth types, though the relation is not always
transparent. Gilbert Hector showed in 1977 that a foliation can have leaves which have nonexpo-
nential growth but not subexponential growth [230].

PROBLEM 3.3. Show the set of leaves with non-exponential growth, and not subexponential
growth, has Lebesgue measure zero.

Hector’s construction in [230] of examples with leaves of this special type appear to produce a set
non-exponential leaves with measure zero. This growth condition, that lim sup 6= lim inf, implies a
high degree of non-uniformity for the asymptotic limits of the leaf. If there exists a set of positive
measure consisting of such leaves, then recurrence within the set should imply a uniformity of the
growth, contradicting the hypothesis. At least, that is the hope.

The following question was posed by Ghys around 1994. It remains open to the author’s knowledge.

PROBLEM 3.4 (E. Ghys). Does there exists a foliation F of a compact manifold M such that
for any two leaves L,L′ ⊂ M , L is homeomorphic to L′ if and only if they are the same leaf?
Even, can this happen in codimension-one? What is known of the cardinality of distinct (up to
homeomorphism) leaves in a codimension-one foliation?
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Given a compact manifold M , the classification of the codimension-one C1 foliations without holo-
nomy on M is essentially completely understood. For higher codimensions, even a modest structure
theorem becomes hopeless. For example, given any collection of flows without periodic orbits on
manifolds M1, . . . ,Mk there is a free action of Rk on M = M1 × · · ·Mk. Since all orbits are
contractible for this action, the foliation it defines has no holonomy.

There is another standard construction which provides examples whose leaves are not flat manifolds.
Let Γ be a lattice subgroup with a dense, faithful representation α : Γ → SO(n) – such exists by
usual methods of lattice theory [643]. Let B a manifold with fundamental group isomorphic to Γ.
Then the suspension construction [69] yields a foliation Fα on a manifold M which fibers over B
with fibers SO(n). Then Fα is a foliation without holonomy, whose leaves are all diffeomorphic to
the universal covering B̃ of B.

Even considering these examples and others, we still propose:

PROBLEM 3.5. Let F be a C1 foliation of a compact manifold M . Suppose that every leaf of F
is without holonomy. Is there a restriction of the isometry types o leaves of F? Can the leafwise
entropy introduced in [18] be non-zero for such a foliation?
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4. Foliation entropy and transverse expansion

One of the most fundamental invariants of the dynamics of a diffeomorphism of a compact manifold
is its topological entropy. When positive, it implies the orbits of f exhibit an exponential amount
of “chaos”. When zero, the map f is somehow not typical, and has unusual regularity. The corre-
sponding entropy invariant for foliation dynamics is the geometric entropy hg(F) for a C1–foliation
F introduced by Ghys, Langevin and Walczak [193]. The geometric entropy hg(F) measures the
exponential rate of growth for (ε, n)-separated sets in the analogue of the Bowen metrics for the
holonomy pseudogroup GF of F . Thus, hg(F) is a measure of the complexity of the transverse
dynamics of F . The precise value of hg(F) depends upon a variety of choices, but the property
hg(F) = 0 or hg(F) > 0 is well-defined. (Chapter 13 of [71] gives an excellent introduction and
discussion of foliation entropy.) There are many fundamental questions about this invariant; the
author’s papers [259, 260, 261] discuss recent developments in how the geometric entropy is related
to transverse hyperbolicity.

PROBLEM 4.1. Suppose F is a C1 (or possibly C2) foliation of codimension q > 1. What does
hg(F) > 0 imply about recurrence properties of the leaves of F .

In codimension one, hg(F) > 0 implies F has a resilient leaf. In higher codimensions, the natural
generalization of the resilient property for a leaf L is that there is an element of holonomy hγ
for L which is locally transversely contracting, and some end of L intersects the domain of hγ .
The hypothesis that there is a contracting element is simply too strong, so the question is also to
formulate a qualitative dynamical property of a foliation which hg(F) > 0 forces to exists. Some
criteria are given in [259], see also [252].)

Ghys, Langevin and Walczak [193] showed that hg(F) = 0 implies there exists a transverse invariant
measure for F . The absence of a transverse invariant measure implies that F has no leaves of
nonexponential growth [481], but it is unknown if this suffices to imply hg(F) > 0.

PROBLEM 4.2. Suppose F is a C1 (or possibly C2) foliation of codimension q > 1. Formulate
qualitative dynamical properties of a foliation which are implied by hg(F) > 0, and are sufficient
to imply hg(F) > 0.

For example, one approach to this was discussed in the program outline [252], where the key open
issue is to develop a theory of measure entropy for a foliation.

PROBLEM 4.3. Give a definition of the measure entropy, or some other entropy-type invariant,
of a C1-foliation F , which can be used to establish positive lower bounds for the geometric entropy.

This problem was asked in the original paper of Ghys, Langevin and Walczak [193]. Their earlier
paper [192] gave a possible definition, but the connection to the geometric entropy is unclear. Hurder
proposed a definition of the measure entropy in terms of invariant measures for the associated
geodesic flow [252]. Another approach might be to define measure entropy for a foliation in terms
of its harmonic measures.

We mention also the work of Shinji Egashira [132, 133, 134], who developed the concept of the
expansion growth rate function, which is the equivalence class of the function of n that counts the
maximum numbers of (ε, n)-separated sets for the holonomy pseudogroup GF of F . This invariant is
analogous to the leaf growth rate function discussed in the last section. Egashira used this invariant
to extend the theory of levels to group actions on the circle of differentiability class C1+bv [135].
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For dynamical systems generated by a single diffeomorphism, positive topological entropy implies
there is an abundance of hyperbolic behavior in a neighborhood of non-atomic invariant measures.
For foliations, the concept of “abundant hyperbolic behavior” also makes sense, and leads to many
results and questions. We begin by recalling a series of questions given in Section D of [328] by
Christian Bonatti, Rémi Langevin et Claudio Possani.

Given R > 0, consider a path γx in Lx with origin x and length less or equal to R and project it
locally on Ly starting at the point x. Let ploc(γ) be the resulting path on Ly. Perform the same
construction with a path starting in y and projecting it onto Lx. Then define

d1 = sup
γx|l(γx)≤R

sup
t

(dγx(t), plocγx(t))

d2 = sup
γy |l(γy)≤R

sup
t

(dγy(t), plocγy(t))

dR(x, y) = max(d1, d2)

The function R 7→ dR(x, y) measures how the leaf Lx through a point x goes away from the leaf
Ly through a nearby point y.

A foliation F is expansive if there exists ε > 0 such that for each pair of points x, y ∈ M, close
enough to allow the above construction, there exists R > 0 such that dR(x, y) ≥ ε.

Inaba and Tsuchiya proved in 1992 that codimension 1 expansive foliations of a compact manifold
have a resilient leaf [286]. Hurder studied expansive C1 group actions and foliations in the papers
[259, 260], and showed that there is always a resilient leaf with contracting linear holonomy. In
higher codimensions, an expansive foliation of class C1+α has uniformly attracting leaves.

The questions of Bonatti, Langevin et Possani used a stronger notion of expansivity.

A foliation F is weakly hyperbolic if there exists a > 0, ε > 0, ε1 > 0, such that if the d(x, y) < ε1

one has :

dR(x, y) ≥ ε for R ≥ a · Log (ε/d0(x, y))

where d0(x, y) is the transverse distance between x and y, (set R = 0 in the definition of dR.

Using the Riemannian metric of M one can also define locally the direction and the strength of the
infinitesimal contraction of the leaves, see [38], obtaining a vector field tangent to F .

The foliation is strongly hyperbolic if the vector field of infinitesimal contraction has no sink.

PROBLEM 4.4. If the foliation is weakly hyperbolic for some Riemannian metric on M , is it
true that there exists another Riemannian metric such that the foliation is strongly hyperbolic ?

Recall the definitions of Markov partition from [71, 80, 83, 620].

PROBLEM 4.5. Does a strongly hyperbolic foliation have a Markov partition ?

Modifying slightly the definition of expansivity, we can define foliations with “sensitive dependence
on initial data”, asking that for every x and every neighborhood v(x) of x there exists y ∈ v(x)
and R(y) such that dR(y)(x, y) ≥ ε.

PROBLEM 4.6. Do there exists nice examples of foliations with “sensitive dependence on initial
data” which are not hyperbolic ?

All three of these very interesting questions remain open to the best of the author’s knowledge.
The short note [24] might have some relevance to the last question.
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Given foliated compact manifolds (M,F) and (M ′,F ′), a restricted orbit equivalence between F
and F ′ is a measurable isomorphism h : M → M ′ which maps the leaves of F to the leaves of F ′,
and the restriction of h to leaves is a coarse isometry for the leaf metrics. Note that h and its
inverse are assumed to preserve the Lebesgue measure class, but need not preserve the Riemannian
measure. Such a map preserves the Mackey range of the Radon-Nikodyn cocycle [640]. Restricted
orbit equivalence also preserves the entropy positive condition, for ergodic Zn actions.

PROBLEM 4.7. Does restricted orbit equivalence preserve geometric entropy? If hg(F) > 0,
must h(F ′) > 0 also?

Connes has show that the Godbillon-Vey class, or more precisely the Bott-Thurston 2-cocycle
defined by it, can be calculated from the flow of weights for the von neumann algebra M(M,F)
(see [97], Chapter III.6, [98].) This gives another proof of the theorem of Hurder and Katok [266]
that if GV (F) 6= 0 then M(M,F) has a factor of type III. The flow of weights is determined by the
flow on the Mackey range of the modular cocycle, so that a type III factor corresponds to a ergodic
component of the Mackey range with no invariant measure. However, almost nothing else is known
about how the flow of weights is related to the topological dynamics of F . In particular, Alberto
Candel has asked in [70] whether the existence of a resilient leaf can be proven using properties of
the flow of weights.

PROBLEM 4.8. How is the flow of weights for F related to the dynamics of F?

Besides being of interest on its own, exploring the connections between the topological dynamics
and the Connes-Krieger flow-of-weights classification of the action will give insights into the study
of the dynamics of C1-group actions.
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5. Minimal sets

A minimal set for a foliation F is a closed saturated subset K ⊂ M , such that there is no proper
closed saturated subset K′ ⊂ K. Equivalently, K is closed is every leaf of F in K is dense in K.

Minimal sets enjoy the strongest type of topological recurrence, and their study was a central focus
of dynamical systems of one generator, especially in the works of J. Auslander, L. Auslander, R.
Ellis, H. Furstenberg, W.H. Gottschalk, G.A. Hedlund, and M. Morse, to mention a few of the
prominent early researchers.

For foliations in general, the study of minimal sets is much more difficult – their study divides into
the merely difficult (codimension one) and the impossible (codimension greater than one.) Recall
that a minimal set K is exceptional if K is not a compact leaf, and not an open set.

We recall first a series of venerable questions about minimal sets in codimension one. Let K be an
exceptional minimal set for a codimension one C2-foliation F of a compact n-manifold M .

PROBLEM 5.1 (Dippolito). Let L ⊂ K be a semiproper leaf of F , x ∈ L and let Hx(L,K) be the
germinal homology group of L at x relative to K. Prove that Hx(L,K) is infinite cyclic.

Hector proved in his thesis [226] that the infinite jet of holonomy is infinite cyclic. The more precise
form of the problem is to show that Hx(L,K) is generated by a contraction.

PROBLEM 5.2 (Hector). Prove that M\K has only finitely many components. That is, show
that K has only a finite number of semi-proper leaves.

This is known to be false for C1 foliations.

PROBLEM 5.3. Show that the Lebesgue measure of K is zero.

The measure of K has is known to be zero for special cases [283, 375, 285].

PROBLEM 5.4. Show that every leaf of K has a Cantor set of ends.

Duminy’s Theorem [84] shows that the semiproper leaves of K must have a Cantor set of ends.

Cantwell and Conlon showed that if K is Markov ( i.e, the holonomy pseudogroup Γ | K is generated
by a (1-sided) subshift of finite type), then all four of the above problems are true [80, 83]. Then
they asked

PROBLEM 5.5. Is every minimal set K Markov?

All of these are difficult problems, but have an appeal because they would lead to a complete
understanding of the dynamics of codimension one minimal sets.

For higher codimensions, there are very few results. Here are some basic questions:

PROBLEM 5.6. Let K be a minimal set for a Cr-foliation of a compact manifold.

• Find conditions on F and r ≥ 0 which imply that F admits a unique harmonic measure on K.

• When does F admit a holonomy invariant tranverse measure supported on K?

• When does F admit a unique holonomy invariant tranverse measure supported on K?

The last two questions have well-known answers for codimension-one foliations, as the existence of
a transverse invariant measure gives a holonomy invariant transverse “coordinate” (see Sacksteder
[510].) Finding criteria for the uniqueness of harmonic measure on a minimal set is an open question
in all codimensions.
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6. Tangential LS category

The Lusternik-Schnirelmann category of a topological space X is the least integer k such that X
may be covered by k open subsets which are contractible in X. This concept was introduced in
the course of research on the calculus of variations in the 1930’s [359, 289, 290]. Extensions of
LS category have been given for actions of compact groups and for fibrewise spaces (see [89].) In
her 1998 thesis [88, 95, 96], Hellen Colman defined two versions of LS category for foliations –
the tangential category which measures the topological complexities of leaves, and the transverse
category, which is a form of category for the leaf space M/F .

Let (M,F) and (M ′,F ′) be foliated manifolds. A map f : (M,F)→ (M ′,F ′) is said to be foliated
if it sends leaves into leaves. A homotopy H : M × R → M ′ is said to be integrable if H is a
foliated map, considering M × R to be foliated with leaves L× R, L ∈ F . The notation 'F will
denote integrable homotopy. Given an integrable homotopy H, for all t ∈ R we have a foliated
map Ht : (M,F)→ (M ′,F ′). Moreover, for each x ∈M the curve t 7→ Ht(x) is a leafwise curve in
M ′. Thus, an integrable homotopy is exactly a homotopy for which all of the “traces” are leafwise
curves. As a consequence, if f 'F g then f and g induce the same map between the leaf spaces.

An open subset U of M is tangentially categorical if the inclusion map (U,FU ) ↪→ (M,F) is
integrably homotopic to a foliated map c : U → M which is constant on each leaf of FU . Here U
is regarded as a foliated manifold with the foliation FU induced by F on U . The leaves of FU are
the connected components of L ∩ U , where L is a leaf of F .

DEFINITION 6.1. The tangential category catF (M) of a foliated manifold (M,F) is the least
number of tangentially categorical open sets required to cover M .

As a foliated coordinate chart is categorical, catF (M) < ∞ for M compact. Singhof and Vogt
showed in [538] the optimal result:

THEOREM 6.2. If M is compact, then catF (M) ≤ dimF + 1.

Moreover, Singhof and Vogt showed that for various classes of foliations, there is also a lower bound
catF (M) ≥ dimF + 1, hence equality holds. Colman and Hurder [93] gave further lower bound
estimates in terms of cohomology and characteristic classes of F . Hurder gave a generalization in
[262] of the Eilenberg and Ganea Theorem [136] that the category of a space X = K(π, 1) equals
the cohomological dimension of π.

THEOREM 6.3. Let M be a compact manifold, and assume the holonomy covering of each leaf
of F is contractible, then catF (M) = dimF + 1.

In his talk in Kyoto, Elmar Vogt announced a generalization of this result [539]

THEOREM 6.4. Let M be a compact manifold, and assume the homotopy covering of each leaf
of F is contractible, then catF (M) = dimF + 1.

There are two kinds of questions about tangential category invariant: how is it related to the
geometry of the leaves, and can it be given a more “homotopy theoretic” definition?

PROBLEM 6.5. Let ϕ : G×M →M a locally free action on a compact manifold M of a connected
Lie group, with real rank k = rank(G). Show that catF (M) ≥ k for the foliation by the orbits of G.

There is a subfoliation F ′ of F by the orbits of the maximal R-split torus Rk ⊂ G. Then catF ′(M) =
k by [93]. Does this imply catF (M) ≥ k? (cf. Singhof [536, 537].)

PROBLEM 6.6. Give a homotopy-theoretic interpretation of catF (M) corresponding to the White-
head and Ganea definitions of category.

This is one of the most important open problems in the subject. The paper by Colman [92] gives
one approach to a solution (for pointed category theory.)
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7. Transverse LS category

Let F be a Cr–foliation of the manifold M , where r ≥ 0. A saturated subset X ⊂ M equipped
with the restricted foliation FX is an example of a foliated space (cf. [508, 266, 425, 71].) An open
subset U ⊂M is regarded as a foliated manifold with the foliation FU induced by F . Note that if
U is not saturated, then the leaves of FU are the connected components of the intersections L∩U ,
L a leaf in M .

Let (X,F) and (X ′,F ′) be foliated spaces. A homotopy H : X × [0, 1] → X ′ is said to be foliated
if for all t ∈ [0, 1], the map Ht sends each leaf L of F into another leaf L′ of F ′.

The concept of foliated homotopy of saturated subsets is connected with many aspects of foliation
theory, which the problems in this section will highlight.

An saturated subset X ⊂ M is transversely categorical if there is a foliated homotopy
H : X × [0, 1] → M such that H0 : X → M is the inclusion, and H1 : X → M has image in a
single leaf of F . In other words, the subset X of M is transversely categorical if the inclusion
(X,FX) ↪→ (M,F) factors through a leaf, up to foliated homotopy.

DEFINITION 7.1. The transverse saturated category cat∩| (X) of a foliated space (X,F) is the
least number of transversely categorical, open saturated sets of M required to cover X. If no such
covering exists, then we set cat∩| (X) =∞.

The basic question is

PROBLEM 7.2. What foliations have transverse saturated category cat∩| (X) <∞?

Several results are now known. Colman showed in [88, 95]

THEOREM 7.3. A compact Hausdorff foliation F of a compact manifold M has cat∩| (X) <∞.

Colman and Hurder [94] gave estimates for the transverse category of compact Hausdorff foliations
in terms of the exceptional set of the foliation.

Hurder and Walczak showed in [272]

THEOREM 7.4. If F is a compact foliation F of a compact manifold M , then cat∩| (X) < ∞
implies the leaf space M/F is Hausdorff.

COROLLARY 7.5. A compact foliation F of a compact manifold M has cat∩| (X) < ∞ if and
only if F is compact Hausdorff.

There are many examples of foliations with non-compact leaves and finite category. However, in
all such cases Hurder showed in [258]

THEOREM 7.6. A foliation F of a compact manifold M with cat∩| (X) <∞ has a compact leaf.

Thus, the question is whether there are interesting classes of foliations where cat∩| (X) < ∞ cor-
responds to some geometric property of the foliation. For example, in the case of Riemannian
foliations, Colman has given in [91] a criteria for cat∩| (X) to be infinite, in terms of the geometry
of the SRF (Singular Riemannian Foliation) associated to F .

PROBLEM 7.7. Suppose that F is a Riemannian foliation of a compact manifold M . Find
geometric conditions on F equivalent to cat∩| (X) <∞.

Another possible extension is to foliations whose leaves are “tame”.

PROBLEM 7.8. When does a proper foliation F of a compact manifold M have cat∩| (X) <∞?
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The Reeb foliation of S3 is a proper foliation with cat∩| (X) infinite, while there the (proper) foliation
of T2 with two Reeb components has cat∩| (X) <∞. The obstruction to covering the Reeb foliation
seems subtle.

PROBLEM 7.9. Does a proper real analytic foliation F of a compact manifold M have a finite
covering with transversely finite category?

Another way to generalize the definition of category, is to drop the condition that the covering be
by open sets. For the category theory of spaces, it is more common to use coverings by categorical
closed sets [289, 290]. For foliations, the existence of a covering by either open or closed transversely
categorical saturated sets is already a strong hypotheses – the Reeb foliation admits neither.

The Borel algebra B(F) of F was introduced in Heitsch and Hurder [241]. This is just the σ–algebra
generated by the open saturated sets of M . The point of its introduction in [241] was that the
Godbillon measure introduced by Duminy on open sets in codimension one foliations [118, 78, 72]
extends to the full σ–algebra B(F). In fact, Heitsch and Hurder showed that the Godbillon and
Weil measures are well-defined on the full measure algebra M(F).

Define the extended Borel algebra B̂(F) of F to be the σalgebra generated by the sets in B(F)
along with the individual leaves of F . Thus, B̂(F) ⊂M(F).

A Borel decomposition of F is a countable collection of disjoint subset {An ∈ B̂(F) | n = 1, 2, . . . }
so that

M =
⋃

An

For example, the Reeb foliation of S3 admits a decomposition with three sets, each in B(F).

A foliation F is said to admit a categorical decomposition if there is a Borel decomposition {An ∈
B̂(F) | n = 1, 2, . . . } such that each set An ⊂M is transversely categorical.

While a compact foliation F has cat∩| (X) <∞ only if it is Hausdorff, one can use the structure of
the Epstein filtration of the exceptional set to show that every compact foliation admits a categorical
decomposition.

Tthe Reeb stability for proper leaves in codimesnion one [280] implies that a proper leaf with trivial
holonomy has an open categorical neighborhood.

It is natural to ask what other classes of foliations also have such a decomposition. For example,
the following result follows immediately from the work of Millett [392]

THEOREM 7.10. If F is a proper foliation, then F admits a categorical decomposition.

PROBLEM 7.11. What non-proper foliations F admit categorical decompositions?

We mention one more question here, which will receive more explanation in the sections on char-
acteristic classes.

PROBLEM 7.12. Suppose F is a C2-foliation with a categorical decomposition. Show that all of
the residual secondary classes of F vanish.
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8. Foliated Morse theory

“Foliation Theory” and “Morse Theory” are two of the great subjects to blossom in the 1950’s,
and have since found applications in all areas of mathematics. It is a perennial question to ask
how to combine these two. Recent research in LS-category and pseudo-isotopy theory reinforce the
interest in this speculative issue. Here is a quote by René Thom from 1964:

On sait quel puissant moyen de classification des structures différentiables nous est donné
par la théorie de Morse, telle qu’elle a été généralisée par des auteurs tels que A. Wallace,
S. Smale, etc. . . . . Il est naturel de penser que cette méthode pourra également se
révéler efficace dans l’étude des structures plus fines que sont les variétés feuilletées.”
René Thom, page 173, [569]

Morse functions can be used to try to understand the geometry of leaves of the foliation. For
example, the 1973 thesis of Steve Ferry [146] studied the existence of open dense sets of function on
M which have generic singularities. Ferry and Wasserman [147] showed that a smooth codimension-
one foliation on a compact simply connected manifold M has a compact leaf if and only if every
Morse function on M has a cusp.

More generally, properties of a foliated Morse function should be related to “topological structures”
of the foliation, perhaps in terms of foliated handle structures, or leafwise structures. The tangential
and transverse LS categories of a foliation discussed in the previous section provide examples of
such topological structures for a foliation.

PROBLEM 8.1. Give a foliated Morse theory interpretation of the tangential LS category.

Kazuhiko Fukui gave some new applications of Thom’s ideas in [159], where he studied the sin-
gularities of foliated Morse functions in codimension greater than two and gave conditions which
implies that the foliation must be a fibration. One generalization of this result might be to use
Morse Theory to study when a foliation has finite tranverse category, since a local fibration is the
model example of a foliation with finite category.

PROBLEM 8.2. Find conditions on a foliated Morse function which are sufficient to imply that
the transverse saturated category of F is finite.

Foliated Morse Theory should be related to the classification problem of foliations. An early version
of Mather’s proof [364, 366] that π2(BΓ1) = 0 used Morse functions in the proof (cf. also [336].)
The exposition of this proof by Claude Roger [493] makes the role of the Morse function explicit.
The Mather-Thurston Theorem greatly generalized these results to all codimensions [364, 365, 366,
367, 368, 369, 571], but the role of Morse functions appears to vanish.

In the early 1980’s, Kiyoshi Igusa developed the foundations of parametrized Morse theory in a
series of foundational papers [273, 274, 275, 276, 277], several of which consider the problem of
properties of Morse functions restricted to leaves of foliations. The work of Igusa is considered
a very powerful technical tool in differential topology. The work of Eliashberg and Mishachev on
“wrinkled maps” [138, 139, 140] gives a new proof of the existence theorem for foliations on compact
manifolds in higher codimensions by Thurston [572].

PROBLEM 8.3. Can the parametrized Morse theory of Igusa be used to give an alternate proof
of the Mather-Thurston theorem?

The question is vaguely stated, but intuition suggests connections between foliated Morse theory
and classification theory of foliations which are waiting to be discovered (cf. [212, 213, 393].)

Alvarez-Lopez developed Morse inequalities for Riemannian foliations in [9], and A. Connes and T.
Fack studies foliation Morse theory and leafwise Betti numbers for measured foliations in [99] .

PROBLEM 8.4. Suppose that F has a transverse invariant measure µ. Is there a relation between
the Morse inequalities for measured foliations and the tangential category catF (M) of F?
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9. Automorphisms of foliated manifolds

The group Diffr(M) of Cr-diffeomorphisms of a compact manifold forms a Frechet space, and the
works of Joshua Leslie [351, 352, 354, 355, 356] and Hideki Omori [454, 455, 456, 457] showed
it has many properties of a Lie group. The survey of Milnor [394] gives an overview of the Lie
group aspects, and non-aspects, of Diffr(M). The more recent book by Banyaga [25] is an excellent
resource, which includes in-depth development of the many topics in the theory of diffeomorphism
groups on which he has worked.

The point of this section is to highlight some questions about the structure of the automorphism
groups of foliated manifolds, a special area in the above more general subject. This is a venerable
research area, though difficult as these groups present numerous technical obstacles to their study.

Let Diffr(M,F) denote the Cr-diffeomorphisms of M which send leaves of F to leaves of F , and
Diffr0(M,F) the normal subgroup of Diffr(M,F) which are connected to the identity.

We also introduce the group Diffr(F) of Cr-diffeomorphisms of M which map each leaf of F into
itself, and the normal subgroup Diffr0(F) of elements path connected to the identity.

Let Ξ(F) denote the space of Cr vector fields tangent to the leaves of F . Then for each X ∈ Ξ(F)
we can form the flow exp(X) ∈ Diffr0(F).

These various subgroups of diffeomorphisms are related by inclusions

exp: Ξ(F)→ Diffr0(F) ⊂ Diffr0(M,F) ⊂ Diffr(M,F) ⊃ Diffr(F)

The outer automorphism group of (M,F) is the quotient

Autr(M,F) = Diffr(M,F)/Diffr0(F)

and contains the subgroup of “leafwise” outer automorphisms

Autr(F) = Diffr(F)/Diffr0(F)

Leslie studied foliations with a finite number of dense leaves in [353], and proved Aut(M,F) is
finite dimensional in that case.

If the foliation F on M is obtained from the suspension of a group action ϕ : G × X → X, then
the group of centralizers of the action on X injects into Autr(M,F). There are many studies of
centralizers of diffeomorphisms (cf. J. Palis and J. C. Yoccoz [460, 461]).

Nathan dos Santos and his colleagues has studied Diffr0(M,F) for foliations defined by actions of
abelian groups in a series of papers [12, 13, 14, 360, 116, 117] where they obtained various rigidity
and perturbation results.

One of the celebrated applications of Sullivan’s theory of minimal models [556, 557, 559] was to show
that Autr(M) is a virtually algebraic group. Is it possible to show a similar result for foliations?

PROBLEM 9.1. Suppose that F has a finite number of leaves which are dense in M . Show that
Autr(M,F) and Autr(F) have algebraic subgroups of finite index.

The theorems of Witte [630], Ghys [188], and Burger and Monod [65, 66] (cf. also Monod [424])
showed that a C1 action of a higher rank lattice on the circle must factor through a finite group.
Feres and Witte [145] extended this result to show that if a higher rank lattice acts on a foliation
which is codimension–one and almost without holonomy, then the action is finite.

PROBLEM 9.2. Prove that a higher rank lattice which acts on a codimension one foliation must
preserve a 1–form on M transverse to F .

One can pose the more general problem:

PROBLEM 9.3. Let F be a codimension one Cr foliation of a compact manifold M . Calculate
Autr(M/F) and Autr(F) for r ≥ 1.
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For codimensions greater than one, there is very little in the literature about Diffr(M,F).

PROBLEM 9.4. Let F be a Cr foliation of a compact manifold M with codimension q > 1. Find
geometric conditions on F which imply Autr(M/F) and Autr(F) are countable groups.

PROBLEM 9.5. Let F be a C2 foliation of a compact connected manifold M . Suppose that F has
a non-trivial residual secondary class (see §12 following) of the form ∆F (hI ∧ cJ) where hI 6= h1.
Prove that Aut2(M/F) is finite.

The leafwise holonomy of F must have higher rank by [249].
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10. Godbillon-Vey class in codimension one

In 1971, C. Godbillon and J. Vey introduced the invariant GV (F) ∈ H3(M) of a C2-foliation F
of codimension-one on the manifold M [198], which was then named after them. Previously, one
could say the study of foliations was considered either as an area of topology, viewing a foliation
is a generalized fibration structure on a manifold (cf. the many geometric results cited in the
introduction and in [336]), or as an area within differential equations, whose key results concerned
recurrence and limit sets (cf. [509, 510, 511, 490]). With the advent of the Godbillon-Vey class and
its generalization to the other secondary classes, a new area of foliation research was created – to
understand what these classes “measured”, when they were non-vanishing, and their implications for
classification theory. Research in this area features the interplay of geometry, topology, topological
dynamics, and ergodic theory.

The early investigations (in the 1970’s) of the “geometry Godbillon-Vey class” started by selecting
a class of codimension-one foliations – without holonomy, or almost without holonomy, or totally
proper, etc. – and then proving the Godbillon-Vey class must vanish, and also showing that the
foliation is cobordant to zero. We mention the works of K. Fukui [162, 163] G. Hector [226, 227],
Mizutani [401], T. Mizutani, S. Morita and T. Tsuboi [404, 405], T. Mizutani and I. Tamura [408],
R. Moussu [432], R. Moussu and F. Pelletier [433], R. Moussu and R. Roussarie [434], T. Nishimori
[444], F. Sergeraert, [521], T. Tsuboi [578], N. Tsuchiya [599], C. Roger [493], H. Rosenberg and
W.P. Thurston [504], and W. Thurston [570].

Moussu and Pelletier [433] and Sullivan [558] made the conjecture that that if the Godbillon-Vey
class is non-zero, then the foliation must have a leaf of exponential growth. There was a dichotomy
at that time between the examples where the foliation had been proven null-cobordant – these
examples had all leaves of polynomial growth – and the foliations where GV (F) 6= 0 – these had
an open set of leaves with uniformly exponential growth. The amazing work of Duminy [118, 119]
proved, in an amazing leap forward, the vanishing of the Godbillon-Vey class for foliations with
only trivial minimal sets (i.e., each minimal set is a compact leaf.) In particular, GV (F) 6= 0
implies there are uncountably many leaves with uniformly exponential growth. There has been no
corresponding leap forward to show the null-cobordance of this class of foliations.

On the other hand, Tsuboi studied the cobordism classes of foliations with low differentiability, and
showed that every C1-foliation of codimension one with oriented normal bundle is null-cobordant,
an amazing result [578, 580, 582, 583, 584].

The Seminaire Bourbaki “Sur l’invariant de Godbillon-Vey” by Ghys [184], gives an excellent review
of developments in the 1980’s, and the survey by the author [261] gives a more extensive discussion of
the ergodic theory approach to the study of the Godbillon-Vey class and more recent developments.

PROBLEM 10.1. Prove that if F is a C1 foliation of codimension-one on a compact manifold
M , and every minimal set of F is a compact leaf, then F is null-cobordant.

There is still open the original question, of just what does the Godbillon-Vey class measure?

PROBLEM 10.2. Give a geometric interpretation of the Godbillon-Vey invariant.

The Reinhart-Wood formula [492] gave a pointwise geometric interpretation of GV (F) for 3-
manifolds. What is needed is a more global geometric property of F which is measured by GV (F).
The helical wobble description by Thurston [570] is a first attempt at such a result, and the
Reinhart-Wood formula suitably interprets this idea locally. Langevin has suggested that possibly
the Godbillon-Vey invariant can be interpreted in the context of integral geometry and conformal
invariants [60, 329] as a measure in some suitable sense. The goal for any such an interpretation,
is that it should provide sufficient conditions for GV (F) 6= 0.
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PROBLEM 10.3. Prove that for a codimension one C2-foliation F , the Godbillon-Vey measure
of an exceptional minimal set is zero.

This has been proven in “almost all” cases [80, 83, 285]. The problem is to prove it without any
extra hypotheses.

Novikov’s proof of the topological invariance of the rational Pontrjagin classes of a compact manifold
[451, 452, 453] was one of the celebrated theorems of the 1960’s. This result was extended to the
normal Pontrjagin classes of a foliation by Baum and Connes [30]. It is an outstanding question
whether the Godbillon-Vey class has this property too.

The “topological invariance of the Godbillon-Vey class” means that given codimension-one foliations
(M,F) and (M ′,F ′), suppose there is a homeomorphism h : M →M ′ mapping the leaves of foliation
F to the leaves of F ′, then h∗GV (F ′) = GV (F).

If h is C1 and the foliations F and F ′ are both C2, then Raby [484] proved h∗GV (F ′) = GV (F).
When h and its inverse are both absolutely continuous, then Hurder and Katok [267] proved this.

There are counter-examples to topological invariance of the Godbillon-Vey class if the foliations
have differentiability less than C2. For such foliations, the problem must be phrased using one
of the several extensions of the Godbillon-Vey invariant. Ghys defined in [180] a “Godbillon-Vey”
invariant for piecewise C2-foliations in codimension one, and then showed via surgery on Anosov
flows on 3-manifolds that there are homeomorphic piecewise C2-foliations with distinct “Godbillon-
Vey” invariants.

Hurder and Katok defined in [267] a “Godbillon-Vey” type invariant for the foliations of fractional
differentiability class C1+α where α > 1/2. They showed that the weak-stable foliations of volume
preserving Anosov flows on 3-manifolds satisfy this condition. Following calculations of Mitsumatsu
[397], they showed that for the geodesic flow of a metric of variable negative curvature on a com-
pact Riemann surface, the “Godbillon-Vey” invariant varies continuously and non-trivially as a
function of the metric (Corollary 3.12, [267]). The weak-stable foliations of all of these metrics are
topologically conjugate.

Tsuboi gave a unified treatment of both of these extensions in [586, 587, 589].

PROBLEM 10.4. Prove the Godbillon-Vey invariant for C2 foliations is a topological invariant.

An intermediate test case might be to assume h and its inverse are a Hölder Cα-continuous for
some α > 0, and then prove h∗GV (F ′) = GV (F), using for example arguments from regularity
theory of hyperbolic systems and an approach similar to Ghys and Tsuboi [196].

The concept of “epais” (or “thickness”) for codimension-one C2 foliations was introduced by Du-
miny [118, 119, 78] and given in terms of the structure theory of C2-foliations. It was used to show
that a foliation with trivial minimal sets admits almost invariant transverse volume forms on an
open saturated subset, which is a purely dynamical consideration.

PROBLEM 10.5. What is meaning of thickness?

Does the thickness have an interpretation as a dynamical property of the foliation geodesic flow,
or some other ergodic property of F?
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11. Secondary classes and BΓq

In this section we introduce some basic concepts and results about the secondary classes and the
classifying spaces for foliations, which will be assumed in the following sections. An excellent
reference for this material is the lecture notes by Lawson [337].

Assume that all foliations and maps between manifolds are at least differentiability class C2, and
F has codimension q.

Foliations F0 and F1 of codimension q on a manifold without boundary M are integrably homotopic
if there is a foliation F on M × R of codimension q such that F is everywhere transverse to the
slices M × {t}, so defines a foliation Ft there, and Ft on Mt agrees with Ft on M for t = 0, 1.

If F0 is integrably homotopic to F1 then the classifying map for F , given by ν : M × R → BΓq
restricts to a homotopy between the classifying maps νt : M × R → BΓq for Ft, t = 0, 1. The
Gromov-Phillips theory implies the converse also holds – if M is an open manifold with no compact
connected components, then ν0 homotopic to ν1 implies F0 and F1 are integrably homotopic.

The homotopy fiber FΓq of the normal bundle map ν : BΓq → BO(q) classifies foliations with
framed normal bundle. That is, given a foliation F on M and a framing ϕ of the normal bundle Q,
then we get a map νϕ : M → FΓq which is well-defined up to homotopy. Note that the space FΓq
is often denoted by BΓq – we prefer the notation FΓq suggesting the normal bundle is framed.

We say framed foliations (F0, ϕ0) and (F1, ϕ1) are framed integrably homotopic if there is an
integrable homotopy F of M ×R with a framing ϕ whose restrictions yield the framings of F0 and
F1, respectively. The classifying maps νϕ0 , ν

ϕ
1 : M → FΓq are then homotopic. The converse also

holds – if M is an open manifold with no compact connected components, then νϕ0 homotopic to
νϕ1 implies F0 and F1 are framed integrably homotopic.

For a paracompact manifold M without boundary, a continuous map M → FΓq determines a
framed Haefliger structure on M . A key point of interpretation of this data, stressed in Haefliger
[212, 213] and Milnor [393], is that it is completely equivalent to giving a foliation of M × Rq
which is everywhere transverse to the fibers M ×Rq →M . Thus, understanding cycles M → FΓq
is equivalent to understanding the foliations of M × Rq transverse to the fibers, up to integrable
homotopy. The case of a cycle M → BΓq is similar, only now the bundle E → M is no longer
assumed to be a product (framed).

There is a well-known differential graded algebra

WOq = Λ(h1, h3, . . . , hq′)⊗ R[c1, c2, . . . , cq]2q

where the subscript “2q” indicates that this is a truncated polynomial algebra, truncated in degrees
greater than 2q, and q′ is the greatest off integer ≤ q. The differential is determined by d(hi⊗ 1) =
1⊗ ci and d(1⊗ ci) = 0. The monomials

hI ∧ cJ = h11 ∧ · · ·hi` ∧ c
j1
1 · · · c

jq
q

where

11 < · · · < i` , |J | = j1 + 2j2 + · · ·+ qjq ≤ q , i1 + |J | > q (1)

are closed, and they span the cohomology H∗(WOq) in degrees greater than 2q. The Vey basis is
a subset of these (cf. [52, 300, 308, 336].)

A foliation F on M determines a map of differential algebras into the de Rham complex of M ,
∆F : WOq → Ω∗(M). The induced map in cohomology, ∆∗F : H∗(WOq)→ H∗(M) depends only the
integrable homotopy class of F . The secondary classes of F are spanned by the images ∆∗F (hI ∧cJ)
for hI ∧ cJ satisfying (1).
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When the normal bundle Q is trivial, the choice of a framing, denoted by ϕ, enables the definition
of additional secondary classes. Define the differential graded algebra

Wq = Λ(h1, h2, . . . , hq)⊗ R[c1, c2, . . . , cq]2q
Again, the monomials

hI ∧ cJ = h11 ∧ · · ·hi` ∧ c
j1
1 · · · c

jq
q

satisfying (1) are closed, and they span the cohomology H∗(Wq) in degrees greater than 2q.

The data (F , ϕ) determine a map of differential algebras

∆ϕ
F : Wq → Ω∗(M)

The induced map in cohomology, ∆ϕ∗
F : H∗(Wq)→ H∗(M) depends only on the homotopy class of

the framing ϕ and the framed integrable homotopy class of F .

The constructions above are all “natural” so there exist universal maps

∆∗ : H∗(WOq) → H∗(BΓq)
∆ϕ∗ : H∗(Wq) → H∗(FΓq)

Again, this is described very nicely in Lawson [337].

We also briefly define three types the secondary classes which have been used in the literature:
rigid classes, generalized Godbillon-Vey classes, and residual classes.

A foliation F on M of codimension q extends to a foliation F ′ of M ′ = M × R with codimension
q + 1. If F is framed, then F ′ is also framed, where the vector field ∂/∂x along the factor R is
added to the framing. Correspondingly, there are a natural restriction maps WOq+1 → WOq and
Wq+1 →Wq which induce maps on cohomology. The image of H∗(WOq+1)→ H∗(WOq) is denoted
by <Oq. Similarly, the image of H∗(Wq+1) → H∗(Wq) is denoted by <q. The classes in <Oq or
<q are called rigid secondary classes. This is due to a well-known result of Heitsch [234] that the
images ∆F (<Oq) ⊂ H∗(M) of these classes are invariant under deformation of F .

More is true – it is immediate that

PROPOSITION 11.1. Let z ∈ <q, then ∆ϕ∗
F (z) is a framed foliated homotopy invariant.

As discussed in [246, 248], there are examples of foliations with framed normal bundles in all even
codimensions at least 4 which have non-vanishing rigid classes.

A class hI ∧ cJ is said to be residual if the degree of the Chern component cJ is 2q. That is,
if |J | = q. The key property of a residual class is that the form ∆ϕ

F (z) ∈ Ω∗(M) has maximal
“transverse weight” q, so has properties of a generalized measure on the measure algebra M(F)
introduced in §7. This is discussed further in [118, 241, 251, 266] and also in volume II of Candel
and Conlon [72]. Residual classes could also be called “residuable” classes - except that the word is
effectively unpronounceable – because it is these classes for which the residue approach applies for
calculating the secondary classes. The residue method dates back to Grothendieck; its application
to foliations began with vector field residue theorems of Bott [39, 40], Baum and Cheeger [29], and
Baum and Bott [28]. Heitsch developed a residue theory for smooth foliations [236, 237, 238, 239]
which was essential to his calculations of the non-vanishing of the secondary classes. Residue theory
was further extended by Lehmann to singular foliations and Intersection Cohomology (cf. [350] for
a survey of his work.)

Finally, a class hI ∧ cJ with hI = h1 – that is, the index set I is the singleton {1} – is called a
generalized Godbillon-Vey class. The conditions (1) imply that the degree of the Chern component
cJ is 2q, so these classes are a subset of the residual classes. One example is the class h1 ∧ cq1 which
is the standard extension of the Godbillon-Vey class to codimension q.
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12. Geometry and dynamics of the secondary classes

The first question asked about the secondary classes thirty years ago, is the first problem in this
section, as it is still a good question.

PROBLEM 12.1. Show there exists a C2-foliation F such that ∆∗F (z) ∈ H∗(M) is non-zero for
every non-zero z ∈ H∗(WOq).

PROBLEM 12.2. Show there exists a C2-foliation F with framed normal bundle such that ∆ϕ∗
F (z) ∈

H∗(M) is non-zero for every non-zero z ∈ H∗(Wq).

There were many constructions of examples that realized the secondary classes, by Baker [22],
Heitsch [237, 240], Kamber and Tondeur [307, 311, 314], Lazarov [338], Morita [426], Pittie [473, 474]
Rasmussen [485, 486], Tabachnikov [562, 563], and Yamato [636, 637].

There is also a long tradition of showing that the Godbillon-Vey class must vanish for certain classes
of foliations, and several authors have proven vanishing theorems for this to the higher secondary
classes. Pittie showed in [474] that all of the secondary classes vanish if the foliation is defined by a
locally homogeneous action of a connected nilpotent Lie group H, and the rigid secondary classes
vanish if the group H is solvable. This vanishing was part of the motivation for vanishing theorems
in Hurder and Katok [266].

The category theory discussed above suggests a new form of vanishing result. Examples and other
calculations suggest that the following:

PROBLEM 12.3. Let F be a C2-foliation on a smooth manifold M . Suppose that the transverse
saturated category cat∩| (M,F) is finite. Prove that all secondary classes must vanish for F . That
is, show that ∆F : H∗(WOq)→ H∗(M) is the trivial map.

If the normal bundle has a framing ϕ, prove that ∆ϕ∗
F : H∗(Wq)→ H∗(M) is the trivial map.

Such a result would offer a new approach to vanishing theorems for the secondary classes, comple-
mentary to the standard methods and results (cf. [251]) generalizing the Moussu–Pelletier [433]
and Sullivan Conjecture [558]. In fact, vanishing theorems for the secondary classes based on
categorical open sets is suggestive of the SRH approach to the Godbillon-Vey class developed by
Nishimori [444] and Tsuchiya [598, 599]. The idea should be that categorical open sets decompose
the foliation into categorical “blocks” which can then be analyzed – exactly analogous to the SRH
approach to Godbillon-Vey.

PROBLEM 12.4. Show that the image of the rigid secondary classes vanish in H∗(BΓq). That
is, show that the composition

H∗(WOq+1) −→ H∗(WOq)
∆−→ H∗(BΓq)

is the trivial map.

Another way to ask the question, is whether every foliation of codimension q on an open manifold
is homotopic to a foliation with trivial Haefliger structure. The known non-zero rigid secondary
classes are all invariants of the framed homotopy class, but not defined for the general case.

The Weil measures [241] provide a mechanism for localizing a residual secondary class, one for which
the degree of the term cJ equals the maximal non-vanishing degree 2q, to an F-saturated Borel
subset of M . The terminology was chosen because these are also the classes for which there are
residue formulas used to calculate them in examples [236, 238, 239]. The residues capture essential
normal information about the foliation, so it would be interesting to develop a residue theory for
sets more general than submanifolds. This has been done in part by Lehmann [350], but mostly
for semi-algebraic sets.

PROBLEM 12.5. Derive a (measurable) residue theory for the localization of the secondary
classes to saturated Borel subsets in B(M), and relate the formulas to the dynamics of F .
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In particular, it is likely that there are vanishing theorems for the residues which reflect the geometry
of the invariant set X ∈ B(M). Such vanishing would generalize the several results known for the
secondary classes of subfoliations (or multifoliations) (cf. [85, 100, 101, 109, 541, 561, 631]).

Domı́nguez has developed a residue theory for subfoliations in [115]. It is then natural to propose:

PROBLEM 12.6. Develop a theory of Weil measures for subfoliations.

A final question is about the dynamical meaning of the higher secondary classes. Hurder [249]
showed that for a C2-foliation of codimension q > 1, if there is a leaf L whose linear holonomy
map Dϕ : π1(L, x) → GL(Rq) has non-amenable image, then F has leaves of exponential growth.
The proof actually constructs a modified ping-pong game for F , using the C2-hypothesis to show
that the orbits of the holonomy pseudogroup shadow the orbits of the linear holonomy group which
has an actual ping-pong game by Tits [574]. Thus, it seems probable that this proof also shows
hg(F) > 0 with these hypotheses. Since the Weil measures vanish for a foliation whose transverse
derivative cocycle Dϕ : Γ → GL(Rq) has amenable algebraic hull [266, 548, 549, 645], it may be
possible to combine the methods of [249, 266, 259] to show

PROBLEM 12.7. If F is a C2 foliation of codimension q > 1, and there is some non-zero
secondary class (or possibly Weil measure), prove that F has positive geometric entropy, hg(F) > 0.
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13. Generalized Godbillon-Vey classes

Recall that in higher codimensions q > 1, the space of secondary characteristic classes H∗(W0q) is
spanned by monomials of the form hI ∧ cJ where where hI = hi1 ∧ · · · ∧ hi` for I = (i1 < ... < y`)
with each 1 ≤ ik ≤ q an odd integer. The generalized Godbillon-Vey classes are those of the form
h1 ∧ cJ where cJ has degree 2q.

A foliation F is amenable if the Lebesgue measurable equivalence relation it defines on V × V is
amenable in the sense of Zimmer [639]. Hurder and Katok showed in [266] that if yI ∧ cJ is not
a generalized Godbillon-Vey class, then ∆(yI ∧ cJ) = 0 for an amenable foliation. The Roussarie
examples [198], given by the weak-stable foliation of the geodesic flow for a metric of constant
negative curvature, are amenable and have ∆(y1 ∧ cJ) 6= 0, so this result does not extend to all of
the classes. Here are two open questions about the generalized Godbillon-Vey classes.

PROBLEM 13.1. Suppose that Γ is a finitely generated amenable group and α : Γ→ Diff(2)(N)is
a C2-action on a compact manifold N without boundary. Let M be a compact manifold whose
fundamental group maps onto Γ, π(M,x0) → Γ, with associated normal covering M̃ . Form the
suspension foliation Fα on the manifold

V = Mα = (M̃ ×N)/{(γx, y) ∼ (x, α(γ)y) for γ ∈ Γ}
Show that each generalized Godbillon-Vey class ∆(h1 ∧ cJ) ∈ H2q+1(V ; R) must vanish for Fα.

If the foliation Fα admits a homology invariant transverse measure which is good (i.e., positive
on open transversals) and absolutely continuous, then ∆(h1 ∧ cJ) = 0 by results of either [241]
or [266]. The hypothesis that Γ is amenable implies that there is a good invariant measure for
the action on N , and hence also for the suspension foliation Fα. The point of the problem is to
prove the vanishing for good measures without the assumption that it is also absolutely continuous.
This problem ought not be hard, but some new technique for “regularizing” invariant measures for
foliations is required. Section 4 of [241] has a further discussion of this issue.

In §3 above we defined the notions of sub-exponential growth, non-exponential growth and expo-
nential growth for a leaf.

PROBLEM 13.2. Show that if almost every leaf of F has non-exponential growth, then every
generalized Godbillon-Vey class ∆(h1 ∧ cJ) ∈ H2q+1(M) vanishes for F .

The conclusion ∆(h1 ∧ cJ) = 0 was proven in [251] when almost every leaf has sub-exponential
growth. For codimension one, Duminy’s results show that that ∆(y1 ∧ c1) 6= 0 implies there exists
an exceptional minimal set of positive measure, and hence the set of leaves with exponential growth
also has positive measure. Thus, the question is really for codimension greater than one.
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14. Homotopy theory of BΓq

Let BΓq (respectively, BΓ+
q ) denote the Haefliger classifying space of C2, codimension-q foliations

(respectively, with orientable normal bundle.) Let FΓq denote the homotopy fiber of the classifying
map of the normal bundle ν : BΓ+

q → BSO(q).

PROBLEM 14.1. Determine the homotopy type of FΓq, and the structure of the fibration

FΓq → BΓ+
q → BSO(q)

Almost by definition, FΓq is (q − 1)-connected [212, 213]. Haefliger showed more, that FΓq is
q-connected, by constructing an explicit integrable homotopy from any framed Haefliger structure
on Sq to the trivial Haefliger structure. Much more subtle is that FΓq is (q + 1)-connected, which
follows from the Mather-Thurston Theorem [364, 368, 369, 571] and the simplicity of Diff2

c(R
q).

PROBLEM 14.2. Prove that FΓq is 2q-connected.

Towards this goal, there is a more specific problem, whose solution would be extremely important
for understanding the homotopy theory of BΓq. Let ι : SO(q) → FΓq denote the inclusion of the
fibre over the base point of BΓ+

q .

The following question was asked by Vogt in the Rio problem session (Problem F.2.1)

PROBLEM 14.3 (Vogt). Is the map ι homotopic to a constant?

The map ι defines a framed Haefliger structure over SO(q) which has an explicit description. Define
the foliation F1 on the product manifold M = SO(q) × Rq with leaves L1(~x) = {(A,A~x) | A ∈
SO(q)} for ~x ∈ Rq. The standard framing of Rq defines a normal framing of F1. In this foliation
of the trivial (product) bundle SO(q)×Rq → SO(q) the framing is constant, while the leaves of F
twist around the origin. Note that all leaves of F are compact, and homotopic to the zero section.

Define F0 to be the product foliation on SO(q)×Rq with leaves L0(~x) = SO(q)× {~x} for ~x ∈ Rq,
and give it the trivial framing also. Note that there is a diffeomorphism of M which carries the
leaves of F0 to the leaves of F1, but the diffeomorphism twist the framing.

PROBLEM 14.4. Construct an explicit framed integrable homotopy from F1 to F0. That is, give
a C2, codimension-q framed foliation F on M × [0, 1] which is everywhere transverse to the slices
of M × {t}, and restricts to Ft on M × {t} for t = 0, 1.

The existence of such a foliation is known (abstractly) for q ≤ 4. Vogt remarked that the case q = 2
is relatively easy – it is a good exercise.

A general solution for n > 2 is equivalent to proving the existence of a lifting g̃ of the adjoint of
the natural map SO(q)→ ΩBSO(q) in the diagram:

BΓ+
q

?�
�
�3

νg̃

g
ΣSO(q) −→ BSO(q)

One corollary of a solution to this problem would be a solution to the following well-known problem:

PROBLEM 14.5. Show that H2m(BSO(q);R)→ H2m(BΓ+
q ;R) is injective for 2m ≤ 2q.

This is deduced using that the normal bundle map BΓ+
q → BSO(q) is natural with respect to

products, the example of Morita [427], and product formulas in cohomology.
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Consider the Puppe sequence of homotopy fibrations

· · · → ΩFΓq → ΩBΓ+
q → SO(q) ' ΩBSO(q)→ FΓq → BΓ+

q → BSOq (2)

The following conjecture is motivated by results of [256], where it is proven for q ≤ 4.

PROBLEM 14.6 (Conjecture 3.4, [256]). Prove that ΩBΓ+
q ' SO(q)× ΩFΓq for all q ≥ 1.

The above questions, and this conjecture, suggests that ΩBΓ+
q is primal. An explicit model for the

space of loops was given by Jekel [293], though it is not clear how to apply his constructions for
the above problem.

PROBLEM 14.7 (Vogt). Let k be a field of characteristic 0, and let ι : SO(q)→ FΓq be the map
described above. Is the induced map in reduced homology with coefficients in k the zero map ?

Vogt pointed out that for k = Z/pZ the answer to the question is “yes” since

H∗(BS0(q);Z/pZ)→ H∗(BΓ+
n ;Z/pZ)

is injective by a theorem of Bott and Heitsch [53].

We continue with the comments by Vogt from Rio [328]. A theorem of M. Unsöld [607] asserts that
a positive answer to this question for a field k with characteristic 6= 2 will imply that

H∗(ΩFΓq; k)→ H∗(ΩBΓ+
q ; k)→ H∗(SO(q); k)

is a short exact sequence of Hopf algebras. In particular, taking k = Q, in the category of topological
spaces

ΩBΓq ' SO(q)× FΓq
would be true rationally (but this cannot happen as Hopf spaces).

Since the map induced by ι in homology is multiplicative, it suffices to check that ι∗ vanishes on
generators of the Hopf algebra H∗(SO(q); k). Thus again for dimensional reasons the answer to the
last question is “yes” for n = 6. But the smallest dimension where the answer is unknown is n = 5.
Here one would have to answer the following

PROBLEM 14.8. Does the codimension 5 framed Haefliger structure induced on S
7 from the

above mentioned framed Haefliger structure on SO(5) by the generator of π7(SO(5)) bound homo-
logically as a framed Haefliger structure?

Because of the known connectivity of FΓ5 this is equivalent, up to torsion not recognized by k, to
showing that this framed Haefliger structure on S7 is trivial. This in turn implies directly that at
least rationally the map induced by ι in homotopy is surjective for n = 5. These comments are
continued in the next section on the non-vanishing of normal Pontrjagin classes.

Thurston showed that GV : π3(BΓ+
1 ) → R is surjective, which implies that the homotopy theory

of FΓ1 = BΓ+
1 is a very massive, and possibly intricately constructed topological space. One

possibility is that FΓ1 has the homotopy type of an Eilenberg-MacLane space K(R, 3). In this
case, however, there should be uncountably many new secondary classes obtained from products of
the generators of the integral cohomology H3(K(R, 3);Z). These are the discontinuous invariants
of Morita [428], and it is unknown if they are non-trivial.

Takashi Tsuboi asked in Question F.4.1 in Rio [328] whether the first of these classes are non-trivial:

PROBLEM 14.9. Construct a C2 codimension 1 foliation F of S3 × S3 such that its Godbillon
Vey invariant GV (F) = (a, b) ∈ H3(S3 × S3) with a/b being irrational.

Tsuboi subsequently gave a partial answer in [592] – he showed that the extended Godbillon-Vey
class can take on irrational values. As pointed out by Robert Wolak in his AMS review of this
article, I.M. Gel’fand, B.L. Fĕı gin, and D.B. Fuks, [174] ask whether the ratio a/b must be rational.
This problem remains open.



FOLIATION GEOMETRY/TOPOLOGY PROBLEM SET 29

If K(R, 3) is not an Eilenberg-MacLane space, then some of these products may vanish, and then
there are enormous families of Whitehead products in π∗(K(R, 3)), or what is equivalent, products
in the homology of the H-space ΩK(R, 3). It is completely unknown if such products are non-trivial
– though it is interesting to compare it to the ideas in the thesis of Herb Shulman [530, 532].

For higher codimensions, the homotopy groups πn(BΓ+
q ) map onto RN for infinitely many values

of n, and N →∞ as n→∞ [218, 245, 248]. In this case, there are non-trivial Whitehead products
corresponding to the product of linearly independent secondary classes (an option that does not
exists for codimension one, where there is only the Godbillon-vey class). Thee are also discontinuous
invariants in the sense of Morita [428, 429], and nothing is known about whether they are non-zero.

The Mather-Thurston Theorem gives information about the homotopy theory of FΓq via the iso-
morphism H∗(ΩqFΓq) ∼= H∗(BDiff2

c (Rq)). This isomorphism is used to prove that FΓq is (q + 1)-
connected, but it also has other implications for the homotopy type of FΓq. One of these is to
suggest the analogy between its homotopy groups, and the cohomology of Lie groups made discrete
H∗(BG;Z), where G is the homotopy fiber of the inclusion Gδ → G. (For more discussion on this
topic, see [64, 220, 369, 394] for example.)

The cohomology groups of Lie groups H∗(BG;Z), are closely connected to many deep aspects of
mathematics, from number theory to geometry [124]. Moreover, they have been computed in many
case, in contrast to what has been done for foliations. J. Dupont has also considered discontinuous
invariants in the group cohomology [123].

Peter Boullay showed in his thesis [57] that π5(FΓ2) contains a divisible subgroup which maps onto
R

2 via the two generalized Godbillon-Vey classes. This is a remarkable result – the proof uses the
scissors congruence results of J. L. Dupont, W. R. Parry and C.-H. Sah [128] to compute various
relative homology groups for geometrically constructed subgroups of Diff+(S2). This work suggests
many questions.

PROBLEM 14.10. Is πn(FΓq) divisible for all n > 0?

Boullay’s work also suggests trying to extend it to all codimensions:

PROBLEM 14.11. Show that π2q+1(FΓq) contains a divisible subgroup which maps onto RN .

We conclude these questions about FΓq with two problems which are variants on problems 14.4
and 14.6.

PROBLEM 14.12. Let F be a foliation of an open manifold M defined by a fibration M → B,
and ϕ a framing of the normal bundle to F on M . Show that the classifying map νϕ : M → FΓq
is homotopic to zero.

The action of the loop space ΩBSO(q) ∼= SO(q) on the homotopy fiber FΓq of the map BΓ+
q →

BSO(q) in the Puppe sequence (2) can be identified with the universal gauge action on framed
bundles (cf. [246, 248, 256]). This gauge action can be non-trivial on cycles with non-trivial
secondary classes. However, if the underlying foliation is trivial, it is not known if the action is
trivial.

PROBLEM 14.13. Let F be a foliation of an open manifold M defined by a fibration M → B,
where B has trivial tangent bundle, and ϕ a framing of the normal bundle to F on M . Show that
the classifying map νϕ : M → BΓq is homotopic to zero.

Of course, this is simply a restatement of Problem 14.6, but with this formulation, it seems tractable.
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15. Transverse Pontrjagin Classes

Assume that F is a C2 foliation of codimension q, with oriented normal bundle Q. The Bott
Vanishing Theorem [41, 42] implies that any Pontrjagin class pJ(Q) = p1(Q)j1 · · · pjqq (Q) of degree
4|J | = 4(j1 + 2j2 + · · · + qjq) > 2q must vanish. For even codimension q = 2m, the powers of the
Euler class of the normal bundle, χ(Q)k ∈ Hkq(M ;R), must vanish if k ≥ 4, as χ(Q)4 = pq(Q)2 = 0.

The map ν∗ : H`(BSO(q);R)→ H`(BΓ+
q ;R) is injective for ` ≤ q+ 2 as the homotopy fiber FΓq is

(q+ 1)-connected. In particular, the universal class p1 ∈ H4(BΓ+
2 ;R) is non-zero. Morita observed

in [426] that there is a compact complex surface M with 2-dimensional sub bundle Q ⊂ TM such
that p1(Q) 6= 0. The 3-connectivity of FΓ2 implies that Q is normal to a haefliger structure on
M , so by the Thurston Realization Theorem [572], there is a foliation F on M with normal bundle
homotopic to Q.

PROBLEM 15.1. Give an explicit construction of a C2 foliation F of codimension 2 on a compact
manifold M such that p1(Q) ∈ H4(M ;R) is non-zero.

The use of Thurston’s theorem above is “non-constructive”, as it ultimately appeals to the simplicity
of Diff2

c(R
2) for the proof. The question is whether there is a direct geometric construction, say

starting with a foliation in a normal neighborhood of the 2-skeleton of the manifold used by Morita,
which is then extended to a foliation by some explicit geometric method. This is essentially the
lowest dimension and codimension where a constructive version of the Thurston’s theorem can be
sought.

Morita also remarked in [426] that the Cartan formula for the primary classes and the Splitting
Principle [395] imply that there are many non-vanishing Pontragin classes under the composition

H`(BSO(2m);R)→ H`(BΓ+
2m;R)→ H`(BΓ+

2 × · · · ×BΓ+
2 ;R)

However, the splitting principle is not sufficient to prove the map ν∗ is injective, as can be seen
in the simplest case in codimension q = 4. By the above, neither p2

1 nor p2 get mapped to zero,
but by the product formula, ν∗(p2

1 − 2p2) is zero in H8(BΓ+
2 ×BΓ+

2 ;R). Vogt posed the following
problem in the Rio meeting.

PROBLEM 15.2. Show there exist a codimension 4 transversely oriented Haefliger structure such
that ν∗(p2

1 − 2p2) is not trivial rationally.

Note that a solution to Problem 14.4 will provide a solution to Problem 15.2.

Ken Millet posed the following problem about the normal Pontrjagin classes in [391]:

PROBLEM 15.3. Let F be a compact foliation of a compact manifold. Show that pj(Q) = 0 if
the degree is greater than the codimension. That is, 4|J | > q =⇒ pj(Q) = 0.

A compact Hausdorff foliation is Riemannian, so the strong vanishing theorem of Joel Pasternack
[465] implies this is true for compact Hausdorff foliations.

Assume that F has codimension q = 2m. We include one question about the cube of the Euler
class, as it fits with the other questions about realizing the non-triviality of the Pontrjagin classes.

PROBLEM 15.4. Construct a C2 foliation F with χ(Q)3 6= 0.

The existence of such a foliation is implied by the conjecture that FΓq is 2q-connected.
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16. Transverse Euler Class

Assume that F is a C2 foliation of codimension q = 2m, with oriented normal bundle Q. The
transverse Euler class χ(Q) ∈ Hq(M ;R) has a nature intermediate between a primary (Pontrjagin
type) class, and a secondary class. For example, the non-vanishing of the Euler class of the normal
bundle, χ(Q) ∈ Hq(M ;R), is often related to the dynamics of F .

Assume that the tangent foliation TF is also oriented. Let µ be a holonomy-invariant transverse
measure for F , and [Cµ] ∈ Hp(V ;R) the Ruelle-Sullivan class [508] associated to µ.

The average transverse Euler class is the pairing χ(Q) ∩ [Cµ] ∈ Hp−q(V ;R). This was introduced
by Mitsumatsu [396], analogous with the average Euler class of leaves introduced by Phillips and
Sullivan [471], when µ is defined by an averaging sequence in some leaf L.

Recall that a “foliated bundle” is a smooth fibration π : M → X with a foliation F on M that
is everywhere transverse to the fibers of π. Hirsch and Thurston proved in [244] that the Euler
class of a foliated bundle with compact fiber vanishes if there is a transverse invariant measure.
The hypothesis that he fiber is compact is clearly necessary. A flat vector bundle E → X has a
foliation F transverse to the fibers, and the normal of F along the zero section X → E is canonically
identified with E. In particular, we can choose E with non-zero Euler class. Let µ be the transverse
invariant measure associated with the zero section, then also χ(Q) ∩ [Cµ] 6= 0.

We say that an invariant transverse measure µ for F is without atoms if µ is zero on compact leaves.

In general, an invariant measure without atoms is “diffused” around each of its points, so intuitively,
the action of the leafwise germinal holonomy on its normal disc bundle is analogous to a foliated
bundle with invariant measure. Continuing the analogy., the Hirsch Thurston theorem suggest that
the Euler class should then vanish.

PROBLEM 16.1. Show that the average transverse Euler class χ(Q)∩[Cµ] ∈ Hp−q(V ;R) vanishes
whenever µ is without atoms.

Special cases of the problem have been established in [270, 271]. The general case of the problem
has proven quite hard to solve, in spite of repeated attempts. Close examination reveals it involves
very interesting questions about foliation geometry.

The result implies that if F has no compact leaves then χ(Q) ∩ [Cµ] = 0. Also, if the measure
µ is a smooth; i.e., is a absolutely continuous with respect to Lebesgue measure on M , then this
implies then χ(Q) ∩ [Cµ] = 0. As an example, this then implies the theorem of Sullivan [554], that
the Euler class vanishes for an Rq bundle with holonomy in SL(Rq).

Deligne and Sullivan proved in [106] that a complex vector bundle with discrete structure group
over a compact polyhedron is virtually trivial.

PROBLEM 16.2. Let F be a holomorphic foliation of a compact manifold M . If F has a dense
leaf, prove that all of the rational Chern classes of the normal bundle vanish.

The normal bundle to the leaves of F are complex vector bundles with discrete structure groups,
while the dense leaf hypothesis often works as a substitute for compactness.
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17. Books on Foliations

The subject of foliations has a plethora of texts which provide introductions to all facets of research
in the field. We collect them here just to call attention to the various texts and monographs.

♦ Complex manifolds without potential theory, [86]
by Shing-Shin Chern (1969) Second Edition (1979)

♦ Characteristic classes, [395]
by John Milnor and James Stasheff (1974)

♦ The Quantitative Theory of Foliations, [337]
by H. Blaine Lawson (1975)

♦ Foliated bundles and characteristic classes, [308]
by Franz Kamber and Philippe Tondeur (1975)

♦ Gel’fand-Fuks Cohomology and Foliations, [48]
by Raoul Bott (Notes by Mark Mostow and Herb Shulman) (1975)

♦ Characteristic classes of foliations, [473]
by Harsh Pittie (1976)

♦ Topology of foliations: an introduction, [568]
by Itiro Tamura (1976) (transl. 1992)

♦ Geometric Theory of Foliations, [69]
by Caesar Camacho and Alcides Lins Neto (1979) (transl. 1985)

♦ Introduction to the Geometry of Foliations, Parts A,B, [233]
by Gilbert Hector and Ulrich Hirsch (1981)

♦ Differential geometry of foliations, [491]
by Bruce Reinhart (1983)

♦ Cohomology of infinite-dimensional Lie algebras,
by Dmitry Fuks (1984) (transl. 1986)

♦ Embeddings and immersions,
by Masahisa Adachi (1984) (transl. 1993)

♦ Partial differential relations, [204]
by Mikhael Gromov (1986)

♦ Feuilletages: Etudes géométriques I, II, [197]
by Claude Godbillon (ms 1986) (appeared 1991)

♦ Riemannian foliations, [422]
by Pierre Molino (1982) (transl. 1988)

♦ Foliations on Riemannian manifolds, [575]
by Philippe Tondeur (1988)

♦ Analysis on Foliated Spaces, [425]
by Calvin Moore and Claude Schochet (1988)

♦ The structure of classical diffeomorphism groups, [25]
by Augustin Banyaga (1997)

♦ Geometry of foliations, [576]
by Philippe Tondeur (1997)

♦ Confoliations, [143]
by Yakov Eliashberg and William Thurston (1999)

♦ Geometry of characteristic classes, [429]
by Shigeyuki Morita (1999) (transl. 2001)

♦ Foliations I, [71]
by Alberto Candel and Larry Conlon (2000)

♦ Introduction to the h-Principle, [142]
by Yakov Eliashberg and Nikolai Mishachev (2002)

♦ Foliations II, [72]
by Alberto Candel and Larry Conlon (2003)



FOLIATION GEOMETRY/TOPOLOGY PROBLEM SET 33

References

[1] N. A’Campo, Feuilletages de codimension 1 sur les variétés de dimension 5, Comment. Math. Helv., 47:54–65,
1973.

[2] M. Adachi, A note on ΓC
n -structures, J. Math. Kyoto Univ., 31:583–591, 1991.

[3] M. Adachi, Embeddings and immersions, Translations of Mathematical Monographs, Vol. 124, Translated
from the 1984 Japanese original by Kiki Hudson, American Mathematical Society, Providence, RI, 1993.

[4] S. Adams and A. Freire, Nonnegatively curved leaves in foliations, J. Differential Geom., 34:681–700, 1991.
[5] S. Adams and L. Hernández, A foliated metric rigidity theorem for higher rank irreducible symmetric spaces,

Geom. Funct. Anal., 4:483–521, 1994.
[6] S. Adams and A. Kechris, A Linear algebraic groups and countable Borel equivalence relations, J. Amer. Math.

Soc., 13:909–943, 2000.
[7] S. Adams and G. Stuck, Splitting of non-negatively curved leaves in minimal sets of foliations, Duke Math. J.,

71:71–92, 1993.
[8] J.W. Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci., 9:93–95, 1923.
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[36] Ž. Bižaca, Smooth structures on collarable ends of 4-manifolds, Topology, 37:461–467, 1998.
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1976:113–139.

[50] R. Bott, On the characteristic classes of groups of diffeomorphisms, Enseignment Math. (2), 23:209–220,
1977.

[51] R. Bott, On some formulas for the characteristic classes of group actions, In Differential topology, foliations
and Gelfand-Fuks cohomology (Proc. Sympos., Pontif́ıcia Univ. Católica, Rio de Janeiro, 1976),
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[197] C. Godbillon, Feuilletages: Etudes géométriques I, II, Publ. IRMA Strasbourg (1985-86); Progress in
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[205] M. Gromov and J. Èliašberg, Elimination of singularities of smooth mappings Izv. Akad. Nauk SSSR Ser.
Mat., 35:600–626, 1971.

[206] M. Gromov and W. Thurston, Pinching constants for hyperbolic manifolds Invent. Math., 89:1–12, 1987.
[207] S. Goodman, Closed leaves in foliations of codimension one Comment. Math. Helv., 50:383–388, 1975.
[208] S. Goodman, On the structure of foliated 3-manifolds separated by a compact leaf Invent. Math., 39:213–221,

1977.
[209] S. Goodman and J. Plante, Holonomy and averaging in foliated sets J. Differential Geom., 14:401–407, 1979.

[210] A. Haefliger, Structures feulletées et cohomologie à valeur dans un faisceau de groupoïdes, Comment. Math.
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[229] G. Hector, Quleques exemples de feuilletages espèces rares, Ann. Inst. Fourier (Grenoble), 26:239–264,
1976.

[230] G. Hector, Leaves whose growth is neither exponential nor polynomial, Topology, 16:451–459, 1977.
[231] G. Hector, Croissance des feuilletages presque sans holonomie, In Differential topology, foliations and

Gelfand-Fuks cohomology (Proc. Sympos., Pontif́ıcia Univ. Católica, Rio de Janeiro, 1976), Lect.
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C. R. Acad. Sci. Paris Sér. A, 279:921–924, 1974.
[306] F.W. Kamber and Ph. Tondeur, Characteristic invariants of foliated bundles, Manuscripta Math., 11:51–89,

1974.
[307] F.W. Kamber and Ph. Tondeur, Non-trivial characteristic invariants of homogeneous foliated bundles, Ann.
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30:307–335, 1978.
[440] T. Nishimori, Isolated ends of open leaves of codimension-one foliations, Quart. J. Math. Oxford Ser. (2),

26:159–167, 1975.
[441] T. Nishimori, Compact leaves with abelian holonomy, Tôhoku Math. Jour., 27:259–272, 1975.
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