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FOLIATIONS AND FOLIATED VECTOR BUNDLES
(First installment, §§1-4)

John Mlilnor

The following 1s a revised verslon of lectures given at
M.I.T. during the Fall Term of 1969. Its eventual goal is to
deseribe the classifying space for codimenslon gq follated

manifolds which has recently been constructed by A. Haefliger,

¢1. Deflinitions, Examples, References,

Intuitively, a manifold M of dimenesion m is
"paliated" if it is expressed as the union of 4-dimensional
submanifolds which fit alcngsiJe each other, loeally, like
parallel 4-planes in euclldean m-space. No restrietion is to
be placed on the global behaviour of these submanifolds.
(Compare #1.% and §1.6.) For that reason, some care will be
needed in formulating a precise definitlon,

We begin by consideringz the disjoint union of all of the
submanifsolds in guestion, This union, L , can be topologized
naturally as an 4-dimensional manifold. Note that the natural
mapping L = M 1s bijective (i.e., it 1s one-to-one and onto).

We will assume that 4 < m , since the case 4 =m 1is
uninteresting. It follows that the manifold L must be an
enormous object: 1t can never have a countable basis, and will
usually have uncountably many components.

Definition 1.1. A foliation of a topological manifold

M eonsicsts of a manifold L of smaller dimension, together

wilth a continuous bljective mapping



f : L ->M

which satisfies the following local flatness condition. Each
point of M should pcésegs an open neighborhood U so that:
(1) U 1is homeomorphic to a convex open subset of the
euclidean space Rm , under a homeomorphilem h ;
(2) the mapping f carries each component of f'l(U)
homeomorphically to a submanifold of U ; and
(3) this family of submanifolds corresponds, under h ,
precisely to a family of parallel 4-planes in

euclidean space, intersected with the open set h(U).
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Two such foliations f : L = M and f%:L’ = M are

isomorphic 1f there exists a homeomorphism L «> L’ so

that the trlangle

is commutative. Of course we cannot distinguish in any way
between two isomorphic foliations of M .
Each component of L 1is called a leaf of the foliation,

and L itself is called the leaf manifold. (It is often

convenlent to identify a leaf with 1ts Image in M ; although
this practice is dangerous.) The dimension 4 of L is called
the dimension of the foliatlon, and the difference m-4 “is

called the codimension.

Remark. In order to specify a follation on a manifold
M , it suffices to specify the follation on a small nelghborhood
of each point of M . In fact 1f we are given foliatlons of
open eubsets U covering M , and if these foliatlons coincilde
up to isomorphlem on the 1nte;seations Uui1 UB » then there
is one and, up to isomorphism, only one foliation of M which
restricts to the given foliatlons of the Uu . The proof wlll be
left to the reader.

So far we have spoken only of topological foliations.,
Given a foliation f : L - M where M 15 a smooth manifold
of class Gr, we can require that the coordinate charts h of

1.1 should be Gr+diffeamarphisms. If such Cr*coardinate



charts, compatible with the follatlon, exlst about every point

of M, then f 1s called a emooth foliatilon of class cT

It then follows that the leaf manifold L possesses a unigue
cT-smoothnese structure so that [ 1s 5 c¢¥-immersion,
Similarly one can define the concept of a plecewilse-linear
foliation, or a real analytic*fﬂliation, or a complex analytice
foliatlon.

In practice, we will concentrate on the theory of smooth
foliations, especially those of class c” ‘

Example 1.2. Any manifold M can be foliated into pointe.

That is, we let L be the unique O-dimensional
manifold which maps bijectlvely to M . In splite of 1ite
unprepossgessing appearance, this pointwise foliation will play
a significant role in subseguent sectlons.

Example 1.3. The plane R2 can be foliated into the curves

y = log |sec x| + ¢,

together with the vertical lines coe x =0 . (See Figure 2.)

#* (Campare §1.5. F:-Idrv?. _7



This correcponds to the set of solutlion curves to> the 4iff-

erential eguatlon
dy/dx = tan x .

In this example, each leaf 1s globally very well
behaved. In fact one can construct a small transverse curve
T , through any point p , which intersects each leaf at most
once . With thils fact in mind, one is tempted to look at the
quotient space (perhaps it should be called M/L) in which
two points of the plane are identifled if and only if they
1ie on a common leaf. (Compare Palais [11].) This quotient
space does indeed exist, and 1s locally euclidean in our
example; but it fails to satisfy the Hausdorff axiom.

Example 1.4, Let HEKZE denote the torus which 1s

obtained from the plane by identifying two points if and only

2 of integer polnts.

if they are congruent modulo the lattice Z
For each flxed slope .s , this torus can be foliated into lines
y = sx + ¢ (corresponding to the differential equation

dy/dx = s). If s 1is ratlonal, then each leaf 1s compact;

ﬁut if = 1s irrational, each leaf 1s everywhere dense in

the torus.

Example 1.5. According to Reeb, the sphere 53

possesses a 2-dimensional foliation which 1s smooth of cl ss
¢® . This foliation can be described roughly as follows.
The interior of a solid torus is follated into 2-cells, each

of which winds asymptotically to the boundary torus, as sketched

in Figure 3. (Each leaf can be thought of as a snake trylng



to swallow its own tail. Our snakes, being ¢® , do not
have pointed tails.) The ccmplemenfary solid torus 1s
follated in an analogous manner.. Thus the common boundary

torus is the only compact leaf.

By way of contrast, Haefliger has proved that 33 does
not possess any 2-dimensional real analytic foliation. Thus

thereis an essential difference between the theory of

c®-foliations and the theory of real analytic foliations. I

do not know whether or not there is any analogous essential
difference between cl-foliations and c”-foliations,

Example 1.6. To conclude, we describe a pathological

example, consisting of a o-dimensional foliation of a 3-mani-



fold with only one leaf. The main object of thls exercise
is to imbue the reader with suitable respect for non-para-
compact manifolds.

Let fhe index o range over the real numbers. Our
manifold M is to be covered with coordinate patches
Eu{ﬁ3] , each diffeomorphic with euclidean 3-space. The
image g (%, » ¥ z,) 1s to be indentified with

Eﬁ{xg’ Vg Zﬁj , where a # B, 1if and only if

Xg = Xq £ 0 (call this common value x),
Vg = Vg t (B - a)/x, and
zg = 2, + (B - a) sgn x .

Evidently these formulas deflne a diffeomorphism
hag @ (X5 ¥4 5 z,) b= (%, ygy 2p)

from the open set x # 0 to itself. Since the consistency

conditions

h h, =nh for v # a ,

¥8 ° "Ba ya

o

h identity ,

af

are satisfied, it follows that the guotlent space M 1s
well defined, and locally euclidean.

In fact M also satisfles the Hausdorff axiom. The
verification of this fact will be left to the reader.

Finally, note thaf the foliation of gu(Rs) into
leaves E = constant 1s preserved by the coordinate transfor-
mations h . Hence these foliations plece together to yleld

ga
g folintion of M .



Given o # B , note that each leaf z,=c¢ in
gu(RS) intersects both the 1ea1j B, = € +Q - B and the
leaf zg =c+p -a in gﬁ{HB] . Fixing B , and choosing
a and ¢ at will, 1t follows easily that the leaf manifold
L 1s connected.

Remark. This pathology can never occur if the manifold
M 1s paracompact., For then M can be given a Riemannian
metric, hence L inherite a Riemannlan metriec, hence every
leaf L, has a countable basls, It follows that no leafl

can Intersect a coordlinate pateh in M more than a countable

number of times. ( Cf’#fdr? C/{EK?/A}V !__C{/ f/’ ?4' 73] .)
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§2, A Historical Note.

Any smooth foliation can be described as the set of
solutions to an assoclated system of differential equations
on M . (Compare Examples 1.3, 1.%.) If the foliation .
dimension is 2 or more, then thesge differential equations
are"overdetermined", so that appropriate integrability conditions
must be satisfied.

These facts are described in a classical result which
is often called the "Frobenius Theorem". (Compare Frobenius
[8], published in 1877.) Actually, as Frobenius himself pointed
out, the theorem in guestion had been proved a decade earller
by A. Clebsch. In fact a recognizable version had been praﬁed
already in 1850, by F. Deahna. 1

It is sad to relate that Deahna did not profit by belng

go far ahead of his time., According to the entry in Poggendorff,
Deahna had barely attained the rank of "Hulfsleh rer" in a
secondary school when he died in 1844, at the age of 28,

Here is a modern formulation of the Deahna-Clebsch-

Frobenius theorem. Any smooth foliation
f:L = M,

of class Cl , determines a linear mapping dfx from each
tangent vector space TLx to the tangent vector space TM,

Setting f(x) = y, the image drx[TLx] will be denoted by

§53 c Tmy .
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Thus'the correspondence _
v @
describes a continuous field of tangent <4-planes on M .
Evidently, the foliatlon is uniquely determined by
this tangent <¢-plane field., If the foliation is smooth of

class Cr+l

, note that the <4-plane field 1s smooth of class
cr . (That is, it is spanned locally by < indepéndent
vector fields of class C'.)
We will =say that a vector field v on M 1s a section
4- n iel if fo 11
of the plaei‘ed@ v(y]eéy r a N

Theorem. A smooth 4-plane fleld @ of class ¥ s r 21,

is tanrent to a (necessarily unigue) foliation of M 1 and

only if the followinzx intesrability condition 1s zatisiled.

For any Gl—vectsr flelds v and w on M which are sections

of @ , the bracket [v, w] =should also be a section of @

This foliation, when it exists, is necessarily srnooth of eclass

at least Cr .
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§3. Transversality

The first half of this section willl conslst of general
remarks about transversallty, and the second half will apply
these remarks to follation theory. All manifolds, maps,
and foliations are to be smooth of class C¥ , where r 1=
fixed, 151‘5‘1‘-..

Let A, B and M be manifolds of dimensions a , b ,
and m respectively.

Definition 3.1, Two mappings f : A = M and

g : B=-> M are transverse 1f, for every x 1in A and y in

B with f(x) = g(y) , the following condition is satisfied.
Setting p = f(x) = g(y) , the tangent vector space TV,
ehould be generated by the images 9f the two linear mappinge

dfx:TﬂxéTMp,dgy:TBF%TMp.
Alternatively, In terms of the dual linear mappings

ar. s M > 1A, dg
X P > TA, dgg

T™ " - TB_
. P :IF 3
the requirement is that the kernel of dfx* and the kernel of-
dgy* should be linearly independent.

Now consider the product A ﬁ B over M , consisting of
-»

all (x, y) in A x B with f(x) =g(y) . If f and g

are transverse, 1t follows easlily from the inverse function

theorem that A X B 1s a emooth manifold of dimension a + b -m .

M
(Compare Lang [12].) Note the commutative square of mappings
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A X B
M
J *lg
A M

Remark. If a + b ¢ m , then evidently the condition

o

N SN

of transversality cannot be satlsfled except in altrivial
sense. Twomaps f : A= M and g : B—-> M wlth a+ b <m
are transverse only if the images f(A) and g(B) are
disjoint.

Examples. The most famillar kind of transversality occurs
when A and B are submanifolds of M . In that case,
A ﬁ B can be identified with the intersection ANnB . (As
examples, two distinet planes in 3-space always intersect
transversally; but two intersecting lines in 3-space cannot
intersect transversally.)

More generally, if f : A = M is arbitrary but B 1s
a submanifold of M , then A ﬂ B can be identified with the
inverse image f_lfB] c A .

Note that amap f : A = M 1s transverse to every map

from a manifold into M 1f and only if the derivative
dfx : TAK - TMf{J{}

is surjective for all x . In that case, themap f 1s

called a submersion.
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As an example, the projection map of a smooth filber
bundle 1s necessarily a submersion., If f : E-= M 1is
the projectlon map of a smooth fiber bundle, then the 1lnduced

mapping

ExB =B
M

1s called the pull back, or the induced fiber bundle over B .

Note that two maps f and g are transverse 1f and

" only if the product map
fxg: AxB—MZXxXM

is transverse to the dlagonal embedding
M->MxM.
In this form, the deflnition extends easlly to any finite

collection of mappings Into M . For example, we define three

maps

f: A=>M,g:B=->M, h: C—=>M

to be transverse 1f and only if the product

fxgxh:AXBXxXC-=->MxMM>xM
is transverse to the diagénal embedding -

M—MxMxM.

It then follows that A x B x C , the 3-fold product over M ,
M M

1s a smooth manifold of dimension a + b 4+ ¢ - 2m .
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. This definlition can also - be formulated in terms of the
Induced linear mappings of dual tangent_spacea. The requirement

is that, foreach x e A, y eB, z ¢eC, and p e¢ M with
f(x) = g(y) = h(z) =p ,
the kernels of the three mappiﬂjs

* * * - * -
T™ - Tﬁx » TM —= TB s TM - TCE

p p ¥y p

should be linearly independent.

Using the latter formulation, 1t is not difficult to
check that transversality obeys a form of associative law.
Congider for example three maps f , g , h 1into M , where
f 1s assumed to be transverse to g . Then the three maps
f, g, h are transverse if and only if f x g 1s transverse

M
to h . Details on all of these matters will be left to the

reader.

Now suppose that M 1is a foliated manifold. Let
f+ L -=>M

be a smooth codimension q foliation.

Lemma 3.2. Every mappinge g : A = M which 1s transverse

to f give rise to a smooth codimension g foliation

L XA=-A
M

of the manifold A .

This follation L x A -> A 1s called the pull back ,
M
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or the induced follation of A .

Examples. If A 1s a submanifold of M , then L Xx A
' M

can of course be identified with the submanifold f'l(A] cL .
The condition of transversallty means intultively that each
leaf of the follation f intersects A transversally. The
cﬁmpanents of these intersectlons form the leaves of the
induced foliation £ 1(A) - A

Here is a quite different example. Let g : ﬁ -> M be
a submersion, and let f : L > M Dbe the polntwise foliation

of § 1.2. Then, intuitively, the Induced folliation L x A — A
M

ig the foliation of A into fibers g_l[cnnstant]. The eodimen-
sion g , in thile case, is equal to the dimension of M .
Proof of Lemma 3.2. Clearly L x A 1s a smooth manifold

M
of dimension a - g which maps biljectively to A . The proof

of local flatness will be divided into four steps.
Case 1 . Suppose that A 1s a convex open subset of
the euclidean space R? , that M is an open subset of R ’
and that g :+ A = M 1s a linear mapping of rank m . Suppose
further that f : L - M is the pointwise foliation of $§1.2.
Inspection shows that each component of L X A maps
diffeomorphically onto an (a-m)-plane of the forﬁ
g'l{constant} in A . 8ince these planes are mutually parallel,
this completes the proof in Case 1 .
Cace 2, Now let A and I Dbe arbitrary, but continue

to assume that f : L => M 1s the pointwise foliation of

§1.2. Evidently a mapping g : A = M 1s transvercse to T

T

S—
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only if g 1s a submersion. But, 1f g 1sg a submersion,

then gilven any point x of A we can choose a coordinate chart
h: U - h(u) «R®

about x, and a coordinate chart
h': V> h'(V) e R"

about g(x) , with g(U) €V , so that the composition
h'! 6 g o 51: nh(u) = h'(V)

is linear. (Sée for example [12, p.20].) Further, we can
assume that the open set h(U) 1s convex. The proof now
proceeds as in Case 1.

Case 3. BSuppose that the given foliation f : L - M
is induced from the pointwise foliation L' = @ of some
manifold @ by means of a submersion s : M = Q@ . Since
g 1s assumed transverse to f , an easy argument shows that

the composition

is again a submersion,

We must study the induced map L x A -=» A . Substituting
M

L=1L'xM, and notlng that
Q .
(L' x¥) xA=L"x(Mxa) =L"xA ,

Q M Q M Q

i1t becomes clear that thies induced map is isomorphic to the
projection

L XA -~ A,
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which is a foliatlon by Case 2 .

General case. Locally, over a sufficlently small open

set U cM, any codimension g roliationfis induced from
the pointulse folilation of RY by means 5f a sultably chosen

submersion
8 : U= RCj

Consider the corresponding open subsets

f-l(U] cL, g-l{'lj) c A,
and

1) xe"X(u) =L xg N (U) €L xA .
U M M

According to Case 3, the induced mapplng
-1 -1 -1
7 (u) X € (U) = g (V)

ig indeed a foliation of g_l{U] . This proves local flatness,

and completes the proof of 3.2.
Here is a slightly different use of transversallty 1n

foliation theory. Consider a collectlon of smooth foliations

f. : L —>M,...,fk:Lk_—a'm

1 1

of a single manifold M , with codimensions equal to

Qqs oo 9 respectively.

Lemma 3.3. If the mappingse fl’ i fk are transverse,

then the product mapping

f o+ L, % ... XL

£ 1

LI

X X
1 M M k
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is a foliation of M with codimension egual to a5 + ... + Q-
The proof will be left to the reader,.
As an example to 1llustrate this. phenomenon, the

1 X Sl X Sl clearly possesses three mutually trans-

torus S
verse codimension 1 foliations,

Startlingly enough, the sphere 53 also possesses three
mutually transverse codimenzion 1 foliations. These
foliations, whilceh are extremely difficult to visualize, are

described in the following paper.

REFERENCE
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84. The Phillips-Gromov Theorem.

In this section, all manifolds are to be paracompact,
and smooth of class at least Cl . The tangent vector bundle
of a manifold M will be donted by the symbol 1M , while
the total space of this tangent bundle will be denoted by
™ .

Consider first two manifolds A and M of dimensions

a=2m. Let
Sub (A , M)
be the space of all Cl-submersions from A to M . We

give the space the cl compact open topology.

(By definition, the Gl compact open topology on a

space of Cl mappings g : A = M 1is induced from the
compact open topology on the space Map(TA, TM) of continuous
mappings from TA to TM by means of the natural embedding

g = dg e Map(TA, TM). )

Let Epi(7A , ™) denote the space of all mappings from
the tangent manifold TA to the tangent manifold TM which
carry every fTlber TAx linearly and surjectively to gsome fiber
TMF . We give thls space the compact open topology

Evldently the correspondence g ¢ dg gives rise to a

canonical embedding

d : Sub(A , M) = Epi(ta , ) .
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Phillipe Submersion Theorem. If the manifold A has

no compact component, then the embedding

d : Sub(A, M) = Epi (TA , ™)

is a weak homotopy egulvalence.

In particular, d 3inducesisomorphisms of homotopy
groups, and of singular homology groups, 1in all dimensione.

For the proof we refer to A. Phillips [16]. This theorem
was motivated by an analogous theorem for immercions which
had been proved earlier by Smale and Hirsch.

Note that the non-compactness restriction on A 1is
essential. TFor example, 1f A 1s compact and parallelizable,
then the space Sub(A, Rm) is vacuous, but Epi(TA , TRm]
is non-vacuous. (This is in contrast with the Smale—Hiréch theory
of immersions of a manifold into a higher dimenslional manifold,
which does not require any non-compactness hypothesis.)

The Submersion Theorem has an important application in
foliation theory. Let @ be a continuous field of tangent
t-planes on the manifold A . We would like to be able to
decide whether or not some homotople 4-plane field is tangent-
to a foliation of A .

| Setting g = a-4 , let 7T Afé be the quotient
g-dimensional vector bundle over A , 1in which two vectors of

TA, are identified if and only if they are congruent modulo

g?x '
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Corollary 4.1. Suppose again that no component of

A 1is compact. If the vector bundle A/ over A 1is

trivial, then some <-plane fileld hamotopie to é is

tangent to an 4-dimensional follation of A .

Proof. If A/ 1is trivial, then evidently there

exlsts a fiberwise llnear and surjective map
h : TA = TRY

with "kernel" equal to Q; Applying the Submersion Theorem,

we see that h is homotopic to dg for some submersion
g : A= rRY? .

The pointwise foliation of R% now induces the reqguired
foliation of A . _ _ |
Remark 1. One outstanding problem of foliation theory
is to know whether this corollary remains true for compact
manifolds. John Wood has shown that 1t 1= true for
3-manifolds, but very little is known in higher dimensions.
Remark 2. The proof above yields only a Cl-fcliation
of A . However, if A 1is a Cr-manifald, with »> 1,
then we can easily approximate g by a Cr—suhmersian, and

thus obtain a ¢F-foliation.

Now suppose that we start with a smoothly foliated
manifold

f+ L —>» M,



of codimension g . Let
Trans(A ,.M ; f)

be the space of all Cl-mappings from A to M which are
transverse to f . We gilve ﬁhis space the Gl compact open
tépolagy. .

Let é? be the field of 4-planes tangent to the given
foliation f , and let /@ be the guotient g-plane bundle
over M . For any{-mapping g : A~=> M we consider the induced

mapping dg : TA = TM , followed by the projection

p: TH - ™/ .
If g 1is transverse to f , then evidently the composition
podg: TA = TM/P

carries ever& fiber Tﬁx surjectively onto some fiber
y/By -

Phillips-Gromov Theorem, If A has no compact component,

then this éonstructicn ylelds a weak homotopy equivéience"-p o d

from the space

Trans(A, M ; f)

of mappings transverse to the foliation to the space

mpi(vh , /)

of surjective bundle mappings.




As an example, if f : L = M 1s the pointwise
foliation of §1.2, then thie thearem evidentiy reduces to
the Submersion Theorem statfed earlier.
B For the proof, we refer to Phillips [18] Alternatively,
Phillips points out that this result follows froﬁ a more
géneral theorem proved by Gromov [15].

Applications of the Phiilips-ﬁromav theorem will be
given in subéequent sections. For the moment, we note only

the following.

Corollary 4.2 (Phillips). If A has no compact com-

ponent, then every tangent plane field ¢ of codimension 1

on A 1s homotopiec to the field of planes tangent to a codim-

ension 1 foliation of A .

This result is best passibie, in a sensé, since Bott
has given counter-examples in codimension 2 .

Proof of 4%.2. Let E be the total space of the twisted
1ine bundle over the real projectlive space Pn . For example
'E can be obtained from the product s x R by identifying
gach pair (x , t) with (<=x , -t) . Note that E has a
canonical codimension 1 follation, corresponding to the :
foliation of S™ x R into spheres st x(constana. (Compare
Figﬁre:h , for the case n =1 J.
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F;'jurﬁ ”
aliaton of Che
twiijéc} i[('n? t!um//e

over P

Let ¥ be the fleld of ﬁ—planes ?:.f cTEy tangent
to this foliation., Note that the manifold E contalns p"
as a leaf. Correspondingly the line bundle 71 E/¥ over E
contains -a twisted line bundle over the subspace PP c E .

Since the twisted line bundle over P is universal,’

there exists a non-degenerate bundle map

n/Q - E/T,

providing that a < n . Hence the space
Epi(TA , TE/¥)

contains a map h with "kernel" equal to é . By the:

theorem, this h is homotopic to p o dg for some mapping'



transverse to the follation of -E . Gléarly g 1induces

the required foliation of A .

(15].

[16].

[17].

[18].

[19).
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(Foliations and Follated Vector Bundles
: Secticns 5-8)

§5. Follated Vector Bundles

Let € be a smooth vector bundle with base space

B =5 (§) , total space E = E(g), and projection map

P:E"'}B-

(The word "emooth" 1s again used to mean smooth of class
c’ , with r =21 fixed.) Ve will sometimes writé §n for
€ , where n 'ig_the dimension of the flbers §x = p-l{x) .

pefinition 5.1. A foliation of the vector bundle £

will mean a smooth follation £ of the total space E which

is transverse to the inclusion map gx -» E for everylfiber
£, - {dﬂmpare Figure 5 .)

- in other words the foliation f : L -> E 1s rgszgj

(77
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to be transverse to the foliation of E by fibers (induced
from the pointwise foliatlon of B) . This transversality

condition is clearly equivalent to the requirement that

the composition p o f should be a submersion af.the leaf

manifeld L in B . |

Note that the codimension g of such a foliation
is related to the fiber dimension n by the inequality |
" 0<g=n. We 1will be particuiarly interested in the case
g =n . (Compare 5.8.)

Examples. The trivial n-plane bundle, with total
space B X R® , has a codimension n foliation induced from
the pointwise foliation of R" . "In  we will see that
the tangent bundle of any ¢® -manifold of dimension n
possesses a smooth codimension n foliation. Here is
another example,

Lemma 5.2; If a smooth n-plane bundle has discrete

struetural group, then 1t possesses a codimenzion n foliation.

(Compare Figure 4.) For the hypothesis of discrete
structural group means precisely that the base space is
covered by open sets Uu » with p'l(uu} diffeomorphic to
Uu X Rn , such that thé foiiation of Uﬂ x R® into horizontal
slices U _ X (constant) 1is preserved by the coordinate

transformations

n .- n
(u n Uﬂ) X R => {uan Uﬂ) x R .

Remark 5.3. Not every n-plane bundle admits a

codimension n foliation. Bott has proved that at least the
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following necessary condition must be satisfied in the
¢” case. All products of rational Pantrjaﬂin classes

h(il+ P |

Py (&) +oo by () e W

B; Q)
must vanish, providing that the dimension h(il + ...+ ik)
is greater than 2n . The simplest example of a vector bundlé
which does not satisfy Bottls—condition 1s provided hyu#;ﬂ
non-trivial 2-plane bundle over complex projective L-space.

A major convenience in working with follated
vector bundles is that they behave nicély with respect to mﬁppings.
Consider for example two smooth véctar bundles § Iand |
and a faiiatinn f of 7.

Lemma 5.4. If a smooth map g : E(E) = E(m)

carries every fiber gx linearly and surjectively to some

fiver 1 , then g 1s transverse to the foliation f ,

and induces a foliation of the vector bundle E .

Proof. Since the restriction of g to any flber
g, 1s transverse to f , 1t follms a fortiori that g 1s
transverse to f , so that g does induce a foliation £

of E(g) . Furthermore, since the composition
g —> E(5) - E(1)

is transverse to f , it follows easily that tﬁe inclusion

&, = E(§) 1s transverse to f’ .



Example 5.5. Suppose that g' splits aﬁ a Hhifney

sum ne@¢ . If T admits a codimensicn g follation,
then so does E . For the natural projection E(n @ ¢) - E(M)

certainly satisfies the hypothesis of 5.4,

Example 5.6. Glven any smooth manifold A, and any

smooth map

h : A «=—> B(7)

we can form the induced fiber bundle h*{n} over A ,

with total space

B(h™(1) = B(D) x A .
B()

Evidently the canonical map
» ml
E(h (1)) — E(M)

satisfies the hypothesis of 5.4, Hence any codimension g

foliation of 'H induces a codimension g follatlion of

h (1)

Next let us look at follations which are given
only on a small néighﬁcurbood of the zero cross-section.’

Lemma 5.7. Let U be an open neighborhood of

the éera-sectinn in E(g) , and let £ be a smooth foliation

of 'y which is transverse to every fiber £y nvu. it

B(g) 1s paracompact, then there exlists a faliatinn r’ of

E which coincides with f throughout some {poa,inlv smallerl




neighborhood of the zero-section,

This result can be expressed more succintly by
saying that every "microfoliation" of & extends to a

foliation of € . Here a mlcrofoliation means an egulvalence

class of foliations, each defined on a neighborhood of the
mro-section in E(g) , and each transverse to every fiver,
where two such are.defined to be equivalent 1f they coincide
throughout some sufficiently small neighborhood of the
zero-section.

proof of 5.7. Since B(g) is paracompact, we

can first choose a smooth euclldean metric for the vector
bundle & , and then choose a smooth function e(x) > O
on B(E) so that the open ball of radius e(x) 1in each
fiver &, is contained in U . _

| Let % : [0, «) = [0, 1) be a smooth function

of ﬁ real varlable so that

AMt) =t for t <1/2,

ax/dt > 0 everywhere .
Thena smooth embedding
h : E(8) = E(§)

1s defined as follows, For each vector v in & let

h(v) = wn( v ) /vl |

24N



Evidently h maps each §  diffeomorphically into the
unit ball in &, leaving the ball of radius. 1/2 point-
wise fixed. .
Seéting n'(v) = e(x) b (v / e(x)) , where
= p(v) , it follows that h' embeds E(g) smoothly
into U ; and that h’. restricts to the identity on the
open set consisting of all v. with || v Il < e(x) /2 .
Evidently this embedding h’ 1s transverse to the
given foliation f of :U , and hence induces a follation

£’ of € . This completes the proof.

Here is one applicaticiof 5.7T. Let E = ﬁn be a

‘emooth vector bundle over a paracompact base space. —

corollary 5.8. The vector bundle 3§ " admits a

codimension gq foliation if and only if it splifs as a

Whitney sum 1® (¢ where 1 1s a g-plane bundle which

‘admits a codimension g -foliation.

Proof. By 5 5, any. foliation of such a Whitney
summand ﬂg glves rise to a foliation of En

Conversely, glven a cpdimensian g foliation f of
;n which is smooth of class c’ , we can restrict to any
fiver 81 = p-1(x) to obtain a codimension g foliation

of the fiber. Let ¢x be the sub vector space of g

which is tangent to the leaf through the zero vector of this
fibgr; Thenevidently these spaces_'mxn'q form the fibers

of a vector bundle

32
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M9 g,

Put unfortunately, this sub bundle is smooth only of class
a1 |
Choose a complementary suﬁ bundle 19 ¢ gn , which
1s smooth of c¢lass CT , in such a way that §n splits as
the Whitney sum 1% ® ¢ 3 . (To find such an 1% one
needs to apply the appr9ximatich theorem which says that
any section of a cf - fiber bundle over a paracompact base
can be approximated arbitrarlly closely by a ¢t - section. -
This theorem is appliéd to the Grassman bundle o*er' B whose
fiber is the space of g-planes in gxn ) |
Evidently the canonical embedding E(17) -> E(&")
}s_transverse to the given foliation f , at least if we
restrict attention to a small nelghbourhood of the zero-
section in E(79) . Hence this embedding induces a smooth
microfoliation of nq . Applying Lemma 5.7, 1t ﬂcllows that
“q possesses a smooth codimension q foliation,
Clearly §n splits smoothly as the Whitney sum
nq 2] cn—q , where cxn-q is the orthogonal complement

of ﬂxq in §xn with respect to some smooth euclidean metrie.

This completes the proof.
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£5., Foliaticn of the tangent bundle

In this seetion we apply the Phillips-Gromov
theorem to study the relatlonship between foliations of a

manifold and foliations of its tangent bundle. Throughout the

section M will denote a paracompact manifold which 1s smooth

of class G“ .

Theorem 6.1, Assume that M has no compact com-

35

ponent. Then M possesses a smooth codimension gq foliation

of class C¥ , r =21, if and only if the tangent bundle

™ possesses a smooth codimension g foliation of class

ct .

Thus the problem of follating M 1s equivalent to .
the problem of foliating “¢ M. The latter problem is

‘easier to work with, since it is more amenable to the

usual technigue of homotopy- theory.

Remark. A fundamental unsolved problem is the
following. Does Theorem 6.1 remain true for compact
manifolds? As an example, the tangent bundle of any odd
dimensional sphere splits off a line bundle, and hence admits
a codimension 1 foliation by 5.5. But no sphere of
dimension > 3 1s known to possess a cﬁdimenaion 1
foliation, | '

" Here is a useful variant of 6.1, Let'Q?'he a
¢ - smooth field of tangent (m - q) - planes on the

manifold M . Again assume that M has no compact component,



Theorem 6.2. The manifold M possesses a smooth

codimension q foliation whose field of tangent planes is

homotople to “_[I/' if and only if the g-plane bundle T M ,fg?

admits a smooth cudimeﬁsion g foliation .

Proof of 6.1. | For the first half of the argument,

the non-compactness hypothesis - will not be needed.

| Choose a C. Rlemannian metric on M , and choose
a smooth functioﬁ e(x) >0 on M, so that the exponential
map carries the open ball of radius e(x) 1n each fiber
TM, diffeomorphically to an open subset of M . (Compare
[23, p..147]).  Let U c T be the open set consisting of
all tangent vectors v with [ v || < e(p (v)) .

Thus the exponential map 1s defined throughout U .
Evidently any foliation f of N induces a follatilon,
which:we will denote by exp* f , of this open set U .
For eaﬁh fiber TMx , since the foliation f. 1s transverse

to the composition

exp :
™M, AUCU —_— N,

*
1t follows that the induced foliation exp f 1s transverse

té the incluslion

t

™ AU ->0U .

Thus we have constructed a micrafuliafion of the

tangent bundle T M . Applying 5.7, this microfoliation



extends to a foliation of T M . Thils proves half of 6.1.

| Before proving the cthér half, it will be convenient
" to state the Phillips-Gromov theorem in a form slightly
different from that of §4. Let M , E be smooth manifolds,
let f be a foligtion of E , and let

5-15':! < TE,

-

be the associated field of tangent planes on E . Then
trans(mt , 1E; )

will dencte the space of all mappings-from ™ to ‘TE
which carry each fiber Tﬁx linearly to some fiber TE& ’

this 11n5§§‘§§gg}gg bg?ng transverse to the incluslon

gﬁy - TEy_. We give this space the compact open topology.
Evidently the natural projection |

trans( , ."rE ; &) - Epi(m, 'TE/§)

is a weak homotopy equivalence. SO we can restate the

Phillips-Gromov theorem as follows. The mapping

L

d: Trans(M , E ; f) = trans( ™ , TE;@)

is a weak homotopy egulvalence, providing that M has no

compact component.

Now let E be the total space of a smcbth vectdr

bundle E over M . A canonlecal "yertical embedding”

V: E-=>TE



is defined as follows. Let z : M = E be the zero cross-
section, For each x e M the inclusion 1: §x c E

induces a linear embedding

dl : T{gx}z(x) - TEZ(X} .

But the tangent space ngx}z(x] is canonically isomorphic
to the vector space §x itself, Thus we obtain a canon-

ical embeddling
}r‘l
5x lEz(x) >

the image being the set of vectors which are "vertical”
(i.e., tangent to the fiber). Combining these embeddings
for all "x , we obtain the required mapping V which
carfies each fiber of € linearly into a fibef%}TE .
Let f be a follation of §, and let $cTE
be the associated field of tangent planes. Clearfi the
embedding €, -> TE,(,) 1s transverse to @z{x]' , so that
V represents an element of the space trans(§ , 7E ;;‘E) .
Now suppose that € 1is the tangent bundle M , |
so that E = TM . The Phillips-Gromov theorem asserts that

the #ertical embedding
V ¢ trans(1 , TE ;QE)

is .homot_ﬁp-i';c, within the space ti'ans('rlrl , TE 3 &] , to

d g for some mapping

g : M= E,

38



which we may assume (after suitable approximation} to be .
smooth of class ¢ . since g 1is transverse to £, 1t

induces the reguired follation of M . This proves 6.1.

proof of Theorem 6.2. Given a smooth fleld YV or

tangent planes on M , let § be the vector pundle ™ /Y
Assume that this bundle § has a foliation f , with assoclated
field of tangenF planes gﬁy c Tﬁﬁg)y '

Fof each x ¢ M we can compose the projection map

with the vertical embedding

8 TE(E]z(x}

to obtain a linear map which is evidently transverse to

i;z{x} . Thus we have constructed a canonical element
v' e trans(at , 1E(8) ;@)
Choose a smooth map

g+ M > E(8)

-

transverse to [ , 80O that the image dg e trans(m , TE(.§} ;é-)
belongs to the same path component as v’ . Then evidently

the tangent plane field associated wlth the induced foliation
gt of M will be homotopic to I_P This proves half of

6.2. '



For the other half of the proof, M- is allowed
to be compact. Given a c¢F - foliation of M , let 'Q'
be the associated field of tangent planes. Then ‘Q?’ is
sm-eoth only of class o1 . put, as in 5.8 , we can
choose a complementary q?plane ;‘ield_ “x , which is smcoth

of class CT¥ , so that

L /A
: Thinkin.g.z, of M, as the fiber of a vector bundle 1T < ™ ,
th.e exponential map restricted to T dinduces a microfoliation
of 11', which extends to a follation of 1 .' |
| Now let g-_J?x' be the orthogonal complement of T
in TM_ . Evidently ¥ isa ¢’ - smooth tangent plane

field, homotopic to W' , with
™ hl'/' Y.

Fihally let ‘E be any tangent plane field of class
¢’ which is continuously homotopic to f{f’ , and hence 3
¢¥ - homotopic to I,J' . Using the covering homotopy theorem, .

we see that _
"rln'ij‘_lyg'ﬂ‘d /;IF’ =M.

gince 1 has been follated, thlis completes the proof.
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87. Integrable homotopy

Let fgy and f, be two different codimenslon g

foliations of the same manifold M , both smooth of class

et .

pefinition 7.1. The foliations f, and f, are

0]
integrably homotopic (or briefly i-homotopic) of class Gr if the:

exists a CT-smooth codimens&on q foliation F of the
product manifold M x R which 1s transverse to every
M x constant and which induces a foliation Cr—isomcrphic
to fD on M x0 , and.a follation Gr—isomorphic to fl
on M x 1.

As nsual, we will often leave out the cF's, simply
| assuming that everything in sight is to be smooth of class

CI'

Without loss of generality, we may assume that the
foliation F , restrlcted to some neigbbcrhabd M x(-e , e)
of M x 0, is isomorphic to a product foliation.

.

o X ideﬁtity : Ly x(-¢ , ¢) > M x(-¢, €) ;-

and similarly with a neighhorhcod of M x1 . To achleve
this, we need only to choose a smooth map A : R -5 R which
carries a neighborhood of 0 to 0O and a neighborhood of

1 to 1 . Then .

identity x x : M xR - M X R



L2

will certainly be transverse to f , and the induced
foliation will have the required property.

Now, given an i-homotopy from fu to fl , and an
i-homotopy from fl to £, it 1s clear that we can plece
together to obtaln an i-homotopy from fD to f, . (Compare

Figure 6.) Thus interrable homotopy i1s an eguilvalence

relation,

l-..___‘-'--ﬁ

VALlA 7?/7 €S

FE? é Paecifjﬂ ?BjéZL/)er infﬁi’aj)fe
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Similarly, glven two foliations fo and fl of a
vector bundle & over M , we define f, and f; to be
integrably homotopic if there exlsts a foliation of tﬁe
induced vector bundle € x R over M x R which restricts to
fo over M x O and restricts to f, over M x1l . Again
this is an equivalence relation. e

(Sometimes it is more convenient to use the unit
~interval [0 , 1] in place a} the real line R as parameter
manifcid. To make sense of thié, one must introduce the-
concept of a foliation, transverse to the boundary, of a
smooth manifold with boundary. The resulting concept of
1—homat0py is completely equivalent to that defined above.
Details will be left to the reader.) |
" It is now possible to sharpen some of the results of

previous sections. Thus 5.7 becomes:

Lemma T.2. Any microfoliation of § extendé to a

foliation of € which is unigue up to i-homotopy.

Proof. Glven two foliations f and f’ of € whieh
‘are isomorphilec when restricted to a neighborhood U of the.
~ zero-section, we must prove that f 1s i-homotopic to f’.
Choosing e¢(x) as in the proof of 5.7, recall that the

mapping

.h’ v i e(x)h(v / e(x)) , for Ve P-I(x)_;

embeds E(E) 1into U ,and is the identity for

Il v | < «(x) /2 . Introducing a parameter t ¢ R, we set



H(v , £) =h'(tv) /& for % 0,

H(v , 0) =V .

Thenevidently H 1s smooth as a function of both variables,
mapping the total space E(g) xR of € XR onto E(8)
Lifting back the foliation f under H , we obtain a
foliation H*f of § X R whieh. coincides with f on
e x0 , andwith h'*f on & X 1 . Thus f 1s i-homotopic
to h'*f ; and similarly f° 1is j-homotopic to h'*f’ .
since h'*f 1s clearly isomorphic to h'*f’, thié completes
the proof.

The results of § can be Eﬂarpened as follows. Let
M be a paracompact c” manifold. '

Theorem 7.3. Every 1- homotopy class of C —faliatians

Q{_ M gilves rise to a unigue i-homotopy class of cY¥-foliations

of the tangent bundle 1M . If M has no compact component,

then the converse 1is true: every i- haﬂotany class of

cf-foliations of 1™ comes from one and only one i-homotopy

class of ¢T-foliations of M .

This one-to-one correspondence is constructed precisely
by the methods of 56, In particular, it preserves the
codimension gq .
The following speclal case is particularly striking.
corollary T.4. The tangent bundle of an m—J mﬂnfnﬁfﬂf:l{ m*ﬂh{ﬂff!

possesses one and only one 1-homotopy class of codimension

m foliations; providing that there 1s no compact congonent.

-
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It may be conjectured that this corollary remains
true ror compact manifolds, although we will see 1n £8

itsel
that the theorem,would be false for compact manifolds.

A

The proof of 7.3 will occupy the rest of §7. First
some notatilon.

Let }({M] d-enate-the set of all smooth i-homotopy
classes of foliations of the manifold M (keeping the
smoothness class €T iixed}. Similarly let Ef(g} be
the set of all smooth i1-homotopy classes of folliations of the

vector bundle € . We will first construct a function

e exp* : 3:(141}_ N ‘}{-r M)

Starting with any foliation f of M , and chodéiﬁg
a Riemannian metric, ‘the Etpcnential map is defined and
induces a microfoliation exp*f of THM . Let the symbol
¢ stand for the operation of extending this m{ ecrofoliation
to a foliation. Then evidently . exp*f  1s a foliatlon of
T M, well defined up to i-homotopy.

Clearly any i-homotopy of foliations of M gilves rise,.~
by this construction, to an i-homotopy of foliatlons of TM .
Thus we have defined a function from the set JIIM} of
i-homotopy classes to the set EF{T M)

"This construction does not-depend on the ﬁartieular"
choice of Riemannian metric. For any two Riemannian metrics

can be joined by a linear homotopy, which induces a homotopy.
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of exponential maps, and hence an i-homotopy of folilatlons.
Now suppose that M has no compact component. Then

a funetion

@) s Fem > Fon

in the opposite direction can be constructed as follows.
Given a foliation f of TM s let §:r c TEy be the
associated field of tangent planes, where E = TH , and
let [V] denote the path component 'oi‘ the vertical embedding
in the space trans (TM , TE ; §) of fibverwise linear

maps transverse to § Choosing a smooth map

g: M= E

so that dg belongs to this path component [V] , the induced
foliation g*f of M 1s defined.

Note that the i-homotopy class of g*f does not
depend on the particular choice of g . For 1f dg, and
dg, belong to the same path component of trans(TM , TE ; @} »
~then by the Phillips~-Gromov theorem, 8o and gg must
belong to the same path comporent of the space Trans(M , E; ) .
But any path from g, to g, 1in Trans (M, E; f) can be
approximated by a path which is "smooth", in the sense that

the 'associated map - : _ )
M x [U 3 1] => E

is GF¥-smooth. (Compare Munkres [2h ; teh 5 - 4.,6] . Gilven

such a smooth path from g, to g, within Trans(M , E ; £) 5



it clearly follous ﬁhat the induced“foliaticna go*f and
gy*f are i-hqﬁotogic.

Note also that the i1-homotopy class of the induced
foliation g*f depends only on the.i-homgtcpy'class of the
foliation f . In fact any integrahble homotopy between
foliations f, and f; of TM is described by a foliation
F of the product manifold E x R . Denote the associated

tangent. plane field by &’ . < T(E x R) Since the
y,t

y.t °
vertical embedding of TM in TE x O 1s evidently homotopic

to the vertical embedding of M in TE x 1 within the space
trans( T , }{'E x R) ; @’j ,
it follows easily that the assoclated mappings
Bo. M—-> E=xO0, gy ¢ M—=>EX 1. .
~are hoﬁotapic within the épacg

Trans(M , E X R ; F) .

Hence gn*f, ~ g,*f) . (Here the symbol ~ stands for
i-homotopy.)

Thus we have constructed a well defined function

F(m) » Fm) ,

to be denoted by the symbol {d_llv]}* .

. £ Exp*
Lemma 7.5. The composition ’}f{m —_— S.f(r M)

-1
a"[v])* |
( (vl) > g(m} 1s the identity map of ?[H} .
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Proof. Start with a folliation f of M . Let
in c:TMx be the assocliated field of tangent planes. Choose

a neighborhood U of the zero-section in TM so that
exp : U => M

is defined, and let

-diy CJPUF . _ | _

be the field of tangent ﬁlaﬁes associated with the induced
foliation exp* f . |

Let z : M - U be the zerofsection.' Since the
composition exp o z 1s thg identity map of M , it is
clear that 2z 1s transverse to the foliation exp*f ,
inducing back on M a foliation which is isomorphic to the
original foliation f . Thus to prove 7.5 we need only

show that the element
dz ¢ trans (™ , W ; P)

belongs to the path component [V] of the vertlcal embedding V .
The tangent space TUz(x} clearly splits canonically as a

direct sum

dzx(TMx) e T(me]z{x} STM, T, .

Using this direct sum decomposition, the two maps dzx and
VvV from TMx to Tuz(x} are evidently gilven by wi> Wweor

P = . S . . 1 B 5



and w > 0 ®w respectively. Each of these two maps 1s
transverse to the subspace @z{x) . .

In fact the subspace éEz{x) can be described explicitly
as follows. MNote that the homomorphism d expz{x) carries
each pair w,; ®w, to the sum w; + w, e T}'ﬂx . Hence @z(x)
consists of all palrs Wy 5t] Wy with Wq + W, € ’!px .

For each t e [0 , 1], consider the homomorphism
we> tw & (1 - t)w from _?ﬁx to TUz{x) . Since this map. :
is evidently transverse to the subspace 2(x) it can be
considered as a point in the space trans(M , U ; d}} .

As t varles from 0 to 1 , we thus obtain a ﬁath from V
to dz within this space; completing thg proot of T7.5.

The proof in the other direction will be based on the
" following construction. Let ¥ be a smooth vector bundle
with paracompact base space, let N be a paracompact c”
manifold, and let f be a smooth foliation of N .

Definition., A smooth map from a nelghborhood U of the

zero-section in E(g) to N 1s fiberwise transverse to [

if its restriction to each fiber Eﬁf\ U 1is transverse to
the foliation 1 .
| Glegrly any such fiberwlse transverse mapping H : U-> N
Induces a microfoliations . h*f of § , which extends to a
foliation e h*f of E .
Let P c TN, be the tangent plane field associated
with the foliation f . Then to each fiberwise transverse

map h we assoclate an element



dh o V ¢ trans(g€ , 1N ; ‘ﬁ}

obtained by composing the vértical embedding of E 1in 1U
with the fiberwise linear map dh .

Now consider two mappings hn and hl from U to N,
both fiberwlse transverse to f . |

Lemma 7.6. If dhy oV and dh, o V belong to the

same path component of the space trans(g , 71N ; @E} , then

the foliation ¢ hy*f of € 1is i-homotopic to the foliation

€ hl*f . |

The prﬂof.is divided inﬁo three cﬁs&s.

Case 1. First suppost that ﬁhu o V=ah o V. It
follows that the two maps, as well as thelr firat.derivatives,
coincide everywhere along the zero-sectlon of £ . Choosing
a Riemannian metric on N , for every x ¢ U close enough
to the zefo;section the two points hﬂix) and hl{x} are

joined by a unique minimal geodesic
t > h(x)

which depends smoothly on thé endpoints. (See for example
[23, p.166].) Evidently we can choose a small neighborheod
U’ of the zero-sectlon so that each h, 1s defined on U’ .
Fu%thérmcre, since the first derivative of 11t coincides.
with the first derivative of h0 everywhere aiong the_ze;n-
section, the mappings h, are fiberwise transverse to f
throughout some smaller neighborhood U” . Thus we can 1lift °

back the foliation f +to obtain a microfoliation, and hence
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a foliation, of the vector bundle § X [0, 1] . This proves

that c¢h. *f ~ ehl*f .

0

Case 2. As an applilcation of this argumen%,for any

h : U= N which is fiberwise transverse to f , note that
gh*f ~ e(expN o dh o V)*f .
In fact the map

dh o V : E(E) —> TN

can be composed with the exponential map for N to yileld

a map ot

expy o dh o V. : U’ —> N

defined on a suitable neighborhood U’ of the zero-section,
Clearly this map colncides with h allalong the zera-sectioﬁ;

and the first derivatives also coincide. . Thus the hypothesis

of Case 1 1s satisfied.

General Case. If dhD oV and dh; o V. belong to the
same path component of the space trans(g, TN ; gﬁ » then
we can choose a smooth patﬁ between these points, cnrrﬁsponding

to a smooth mapping
H: E(g) x [0, 1] => TN .
Following H by the exponential map in N , we obtaln

expy o H : v’ x[0o, 1] => N,
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vhere U’ 1s a suitable neighborhcod of the zero-sectlon,

Thus the foliation f induces a microfoliation
of the bundle E X [b ; 1] , and this microfoliation extends
to a foliation. This proves that

e(expy o dhy o V)*f ~ e(expy o dhy o V)*f .

Together with Case 2, it completes the proof of Lemma 7.6.

Now we are ready for the final step.

5 P .
Lemma T7.7. The éompcsition :{( ) = (d—i}:” > ?(M)

¢ exp* ;
= 5({ 71) is the identity map of ’jf( m) .

Proof. Starting with a smooth foliation f of TM ,

and setting E = TM , we Tirst choose a smooth map g : M = )
transverse to f , so that dg 1s homotopic to V within
the space trans(m , 7E ; ®) . Then the foliation f 1ifts
back to a foliation g*f of M, which 1ifts back to a
microfoliation exp*g*f of 1M - Extending to a follation
£’ = ¢ exp*g*f , we must prove that £’ ~f .

We will apply Lemma 7.6 to the vector bundle M rand

the foliated manifold E . As maps

we take the inclusion map 1 , and the compositlon g o exp
of the maps | '

exp ' g
U > M > E .
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Evideﬁtly the follations of M assoclated with these two
mappings are just f and f‘ respectively.
Clearly dl o V e trans(™ , 1TE ; §) is equal to
the vertical embedding V , and d(g o exp) o V ¢ trans(mi , 7E ; ®)
is equal to dg ;. Since V and dg belong to the same
path component by hypothesis, it follows from 7.6 that
f ~f’ . This proves Lemma %'?t
Evidently the two 1emmaé 7.5 and 7.7 together prove
Theorem T7.3.
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$ 8, An Example

This section will take a detalled look at the constant
slope foliations of the torus M=R>/z°. ( Compare § 1.4, )
Let f° denote the codimension 1 <foliation with constant
slope dy/ﬁx = 58, We will prove the followlng two statements. -
Assertion 8.1. If s # s', then the foliation f°

is not Cr integrably homotopiec to £% for any r= 2.

( Presumably this statement is true for r =1 also, but
the present proof is not adequate for that case. )

Assertion 8.2. The induced foliation exﬁ* f3 of the

tangent bundle 7yM 1is C“integrsbly homotopic to the induced

ﬁ a’ '
foliation exp f for all s and s -

o . 'Thué"ir"sz ) stands for the set of all c® integrable
homotopy classes of follations, where rz 2, then we have
constructed uncountably many distinct elements in the set

‘EF*{M ) which all map to a single element under the function
) *
exp : F(M }——-——-'}%M)

This shows that Theorem T.S_ falls for compact manifolds,
such as the torus.
The proof of 8.1 will be based on the following_mure

general statement. Suppose that r 2 2,



Theorem 8.3. If two smooth follations of a compact

manifold are vl interrably homotonle, then there exists a

r=1

Cr"l- diffeomorphism of the manifold, C - isotopilc to

the identity, which transforms one foliation to the other.

( conversely, it 1s clear of course that if we are
given any CT- isotopy H : M x R—> M, then any cr-
folistion £ of M pulls back to a ¢® integrable homotopy
H*f between foliations of M.‘ This converse statement 1is

true whether the manifold M 1s compact or not.)
Proof of 8.3. Let F bea ¢F- foliation of M x R-

which is transverse to every M X (canstant), and let

Ct T (MxXR)

be the associated field of tangent planes. Clearly the.

field & is smooth of class cr-1 Using a paftitign of

unity, construct a cr-l  yector field v (x,t) on M xR
so that - |

v (x,t) e & x, t,

‘and so that the derivative d7 of the projection
: M x —>R maps V (x,t) to the constant vector
field d/at on R. sSince M is compact, the vector fleld
v generates a one parameter group of diffeomorphism '
gy : Mx R—M x R, _
where g (x,u) 1is smooth of class Gr-l ‘as a function
of three variables. ( Compare [ 23, pp. 12 - 14 7.
The condition r =2 1s needed here. ) Hote‘that g, maps

each M xc onto Mx (¢c+ ¢ ).



Evidently each g transforms the foliation F into

itself : that i1s g  F ¥ F, So if F, denotes the foliation

induced by F on the submanifold Mxi, then

*
g1 F1 = Fp
Now let fy denote the foliation of M which corresponds
to this foliation Fi of Mxl. Then clearly

h ofo=1f
1 "1 0

where the diffeomorphism h : "M -—2M, defined by

ht (x}: t. = B¢ (xs'ﬂ')x

is Gr"l ~isotopic to the identity map hO This completes
the proof of 8.3. ) o
- i

Again let f°® denote the slope s foliation of the

torus.

Lemma 8..4. If s # s, then no homeomerphism of the

torus which is homotoplc to the identity can transform f°

'
into fE._ _
Proof. To any foliation f of the torus M we will

assign a topological invariant A(f) which consists of a

set of lines through the origin in the vector space
?(’1 M ® R. - '
The given foliation f clearly pulls back to a foliation

e
f of the universal covering manifold M. Let K be a compact

subset of M whose interior maps onto M, and let ¥k be

the set of all elements o # 1 in the group ?E"i M of covering

tpransformation such that both K and oK intersect some common

&7
b

leaf of the foliation r. ( compare Figure 7.) Then, embedding



M in the plane ?’1 M @ R, " draw a line o @R from the
nrigin through each point ¢ of 2;( Let _.LK (). be
the set consisting of all 1:|.mit lines

1lim ﬂ'iﬁﬂ-C?EiM@R;'
i '

where { oy } can be any infinite sequence of distinct eleme_nts
of 5 for which this 1imilt exists.

We claim that this set "'LK (f) of limit lines is independent
of K. TFor if J 1s another compact subset of M ‘whose interior
maps onto M, then ' |

J c "E’IK v. .. .vTK
for some finite collectlon of elements ’El, $. owow 'Z% = 711!*1.

If GEZJ—, then

'/E:"l( o ‘Q [ 4 -E K' |
for some ¢ and f . It follows that

Y Ffay = §p Y -



For- L)( the line A 1s the limit of a sequence oy @ R
with o€ EJ ’ 'then clearly A 1s also the limit of a

corresponding sequence ’I_’;}Ua %_@ R.
¢ 3

This proves that A (f) 1s well defined. It 1s evident
from the constructlon that the set A (f) 1s a topological
invariant of the follation f ., 1In particular, suppose that
two foliations £, anci f'5__correspond under a homeomorphism
h: M—3M. ( This means that the following diagram is

commutative. )

Then clearly the two sets A (f;) and A (r;) must
correspond under the induced linear mapping
hy : 73 W& Rem—>77 M 6 R.

l-ﬂ particular, if h 1s homotopic to the identity, then
A (£) = A (£,). |

Finally, let us apply thils construction to the constant
slope foliation f°, Evidently the invariant A (£®%) consists
of a single line of slope s in??i M @ R. This completes the
proof of 8.4, -

Combining 8.3 and 8.%, we clearly obtaln the Assertion

8.1.

-



Proof of Assertion 8.2. The proof wlll be based on a

suggestion of Haefliger, and 1s closely related to Reinhart
[ 25, p. 468 1.

In addition to the original coordinates x modulo 1
and y modulo 1 on the torus, we will use rotated coordinates
a and b, wherc the rotatlon is chosen so as to carry the lines '
y = &X + cmsﬁ,q-r to the horizontal lines b = constant. The
coordinate pair (a,b) associatéd with each point is well defined
modulo some appropriate lattice of points in the plane.

Let X, ﬂ be corresponding coordinates in the tangent
bundle, so that the projection from ™ to M ial given by

(a,b,ﬁ,ﬁ}]—-—%' ( a, b), |

and the exponential map by

-__'_('a:b:“;g);__'_.;. (a+05','b'+g].

Thus exp* carries the foliation £2 of M, with typical
leaf b = constant, to the follation of 71 with ;.'.y'pical
leaf Db + ‘g = constant.

Lemma ©8.5. ‘This foliation expﬁfs gf)( ﬂ]é ve::gr' gﬂ.’ﬁ!é’é 4| !’ﬂ.ﬁ

]L}}'n'mz leaf { (2, b, %,4) l | b -!-.ﬂ= constant },

1s integrably homotopic to the foliation F®  with typical

leaf .

{ (2, b, % £) | ph cnnstant.} .
proof. Gonsiderfan intermediate jolia;:i;n {:1 //Uf Y;A
35 follows. Esch lea G)C Fi an be describe cally as (M€
quph of a fundion 8=4C3,b0) Silisfying the ddoital ezuazfms
Sh/3a =0, 3f/3v =e (), 2f/3= =0

where Eiﬁ’] is a ¢ rfunction satisfying 'L‘Ag cam/;ﬁms
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g (f) =-1 for =1
g(‘gy = 0 for 4z 2.

Locally, this foliation Fl 1s induced from the foliation

sketched in Figure 8 by means of the projectlon

a, b, o g?}+———-—f} b, gi

Evidently the two follatlons exp* £° and F, are
isomorphic throughout the neighborhood ﬂ{l of the zero-

section in TM. Hence by Lemma 7.2, the follation exp*? rs

is i-homotopic to F;.

Now consider the smooth 1sotopy

Jefinea’ !J)! -
ht { a, b, o, g) = { a, b, d} ﬂ+ t; )
Evidently the follation h;* Fq is i-homotopic to Fq- But

h 2 T™M—TM

h;¢Fl, coincides with F¥ throughout a neighborhood of the

*s * 8
zero-section. Thus exp ani ~ h3 Fl ~F,

which completes the proof of 8.5,

et e S ——
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Now, to prove 8.2, we need only show that Fo ~ F° .
Switching back to the original coordinates x,y on M, and
_assoclated coordinates &, N on TM, clearly F® has typical
leaf N = §E + constant.

Keeping x and y fixed, but rotating the &, T plane,
we obtaln a smooth isetopy-of T™ which transfﬁrms F? to

rs .
FE. This isotopy TM X R——> THM -~ induces the requir_ed i-homotopy,

and completes the proof of 8.2.
We cnncludé with an excerise for the reader. Deflne two

and f, Of M to be concordant if there

foliatlons fo
exists a foliation F of M x R which 1s transverse to Mx O

‘and M x 1 {-ﬁut~not necessarily to every M x constant ),
and which induces a foliation isomorphic to fD (respecfiva}y -flj
on M x O (respectively on M x 1).

"problem ( Haefliger ). Using Reinhart's technigue, as in

Figure 8, prove that the constant slope follation i‘E is
¢ ] .
concordant to sl
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